Vector functions.

Definition. The curve of a type x = x(t), y = y(t) is called a **parametric curve** and the variable t is called a **parameter**.

Definition. Vector

$$\mathbf{r}(t) = \langle x(t), y(t) \rangle = x(t)\mathbf{i} + y(t)\mathbf{j}$$

is called the **position vector** for the point with coordinates (x(t), y(t)).

A function such as $\mathbf{r}(t)$, whose range is a set of vectors, is called a **vector function** of t.

Example 1.

1. Sketch the curve represented by the parametric equation $x(t) = \frac{1-t}{1+t}, y = t^2$.

2. Eliminate the parameter to find the Cartesian equation of the curve.

Example 2. An object is moving in the *xy*-plane and its position after t seconds is $\mathbf{r}(t) = \langle t-3, t^2-2t \rangle$.

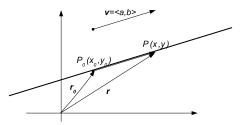
- 1. Find the position of the object at time t = 5.
- 2. At what time is the object at the point (1,8).

3. Does the object pass through the point (3,20).

4. Find an equation in x and y whose graph is the path of the object.

Vector equation of a line.

A line L is determined by a point P_0 on L and a direction. Let **v** be a vector parallel to line L. Let P be be an arbitrary point on L and let \mathbf{r}_0 and \mathbf{r} be the position vectors of P and P_0 .



Then the **vector equation** of line L is

$$\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$$

If $\mathbf{r} = \langle x(t), y(t) \rangle$, $\mathbf{v} = \langle a, b \rangle$ and $P(x_0, y_0)$ then **parametric equations** of the line L are

$$x(t) = x_0 + at,$$
 $y(t) = y_0 + bt$

Example 3. Find a vector, parametric, and Cartesian equations for the line containing the point (2,-1) and parallel to 2i + 3j.

Example 4. Find a vector and parametric equations for the line passing through the points A(1,3) and B(2,-1).