Definition. A two-dimensional vector is an ordered pair $\mathbf{a} = \langle a_1, a_2 \rangle$ of real numbers. The numbers a_1 and a_2 are called the **components** of \mathbf{a} .

A representation of the vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is a directed line segment \overrightarrow{AB} from any point A(x, y) to the point $B(x + a_1, y + a_2)$.

A particular representation of $\mathbf{a} = \langle a_1, a_2 \rangle$ is the directed line segment \overrightarrow{OP} from the origin to the point $P(a_1, a_2)$, and $\mathbf{a} = \langle a_1, a_2 \rangle$ is called the **position vector** of the point $P(a_1, a_2)$.

Given the points $A(x_1, y_1)$ and $B(x_2, y_2)$, then

$$\overrightarrow{AB} = < x_2 - x_1, y_2 - y_1 >$$

Example 1. Find a vector **a** with representation given by the directed line segment \overrightarrow{AB} . Draw \overrightarrow{AB} and the equivalent representation starting at the origin.

(a) A(1,2), B(3,3);

(b) A(1, -2), B(-2, 3).

The magnitude (length) $|\mathbf{a}|$ of \mathbf{a} is the length of any its representation. The length of $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the vector \overrightarrow{AB} from $A(x_1, y_1)$ to $B(x_2, y_2)$ is

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The only vector with length 0 is the **zero vector** $\mathbf{0} = < 0, 0 >$. This vector is the only vector with no specific direction.

Example 2. Find the length of the vectors from Example 1.

Vector addition If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then the vector $\mathbf{a} + \mathbf{b}$ is defined by $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$.

Multiplication of a vector by a scalar If c is a scalar and $\mathbf{a} = \langle a_1, a_2 \rangle$, then the vector is defined by

$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

 $|c\mathbf{a}| = c|\mathbf{a}|$

Two vectors **a** and **b** are called **parallel** if $\mathbf{b} = c\mathbf{a}$ for some scalar *c*.

By the **difference** of two vectors, we mean

$$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$$

so, if $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then $\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$.

Example 3. If a = < -1, 2 > and b = < -2, -1 >, find (a) a + b

(b) 1/2b

(c) $\mathbf{a} - \mathbf{b}$

(d) |2a - 5b|

Properties of vectors. If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors and k and m are scalars, then

1. $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$	5. $k(\mathbf{a} + \mathbf{b}) = k\mathbf{a} + k\mathbf{b}$
2. $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \vec{c}$	6. $(k+m)\mathbf{a} = k\mathbf{a} + m\mathbf{a}$
3. $a + 0 = a$	7. $(km)\mathbf{a} = k(m\mathbf{a})$
4. $a + (-a) = 0$	8. $1a = a$

Let i = < 1, 0 > and i = < 0, 1 >.

Example 4. Express $\mathbf{a} = \langle 2, 4 \rangle$, $\mathbf{b} = \langle -1, 3 \rangle$, and $2\mathbf{a} + \mathbf{b}$ in terms of \mathbf{i} and \mathbf{j} .

A **unit vector** is a vector whose length is 1. A vector

$$\mathbf{u} = \frac{1}{|\mathbf{a}|} \mathbf{a} = \left\langle \frac{a_1}{|\mathbf{a}|}, \frac{a_2}{|\mathbf{a}|} \right\rangle$$

is a unit vector that has the same direction as $\mathbf{a} = \langle a_1, a_2 \rangle$.

Example 5. Given vectors $\mathbf{a} = \mathbf{i} - 2\mathbf{i}$, $\mathbf{b} = \langle -2, 3 \rangle$. Find a unit vector \mathbf{u} that has the same direction as $2\mathbf{b} + \mathbf{a}$.

Direction angles and direction cosines. The direction angles of a nonzero vector **a** are the angles α and β in the interval $[0,\pi]$ that **a** makes with the positive x- and y- axes. The cosines of these direction angles, $\cos \alpha$ and $\cos \beta$ are called the **direction cosines** of the vector **a**.

$$\cos \alpha = \frac{a_1}{|\mathbf{a}|}, \quad \cos \beta = \frac{a_2}{|\mathbf{a}|}, \quad \cos^2 \alpha + \cos^2 \beta = 1$$

We can write

$$\mathbf{a} = \langle a_1, a_2 \rangle = |\mathbf{a}| \langle \cos \alpha, \cos \beta \rangle$$

Therefore

$$\frac{1}{|\mathbf{a}|}\mathbf{a} = <\cos\alpha, \cos\beta >$$

which says that the direction cosines of \mathbf{a} are the components of the unit vector in the direction of \mathbf{a} .

Example 6. Let **c** be the vector obtained by rotating $\mathbf{a} = < 1, 3 >$ by an angle of 60 degrees in the counterclockwise direction. Compute the vector **c**.

Example 7. Two forces $\vec{F_1}$ and $\vec{F_2}$ with magnitudes 10 lb and 12 lb act on an object at a point P as shown in the figure. Find the resultant force \vec{F} acting at P as well as its magnitude and its direction.

