Chapter 1. Introduction to vectors and vector functions Section 1.1 Vectors

Definition. A two-dimensional vector is an ordered pair $\mathbf{a}=<a_{1}, a_{2}>$ of real numbers. The numbers a_{1} and a_{2} are called the components of a.

A representation of the vector $\mathbf{a}=<a_{1}, a_{2}>$ is a directed line segment $\overrightarrow{A B}$ from any point $A(x, y)$ to the point $B\left(x+a_{1}, y+a_{2}\right)$.

A particular representation of $\mathbf{a}=<a_{1}, a_{2}>$ is the directed line segment $\overrightarrow{O P}$ from the origin to the point $P\left(a_{1}, a_{2}\right)$, and $\mathbf{a}=<a_{1}, a_{2}>$ is called the position vector of the point $P\left(a_{1}, a_{2}\right)$.

Given the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then

$$
\overrightarrow{A B}=<x_{2}-x_{1}, y_{2}-y_{1}>
$$

Example 1. Find a vector a with representation given by the directed line segment $\overrightarrow{A B}$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at the origin.
(a) $A(1,2), B(3,3)$;
(b) $A(1,-2), B(-2,3)$.

The magnitude (length) $|\mathbf{a}|$ of \mathbf{a} is the length of any its representation.
The length of $\mathbf{a}=<a_{1}, a_{2}>$ is

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

The length of the vector $\overrightarrow{A B}$ from $A\left(x_{1}, y_{1}\right)$ to $B\left(x_{2}, y_{2}\right)$ is

$$
|\overrightarrow{A B}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The only vector with length 0 is the zero vector $0=<0,0>$. This vector is the only vector with no specific direction.

Example 2. Find the length of the vectors from Example 1.

Vector addition If $\mathbf{a}=<a_{1}, a_{2}>$ and $\mathbf{b}=<b_{1}, b_{2}>$, then the vector $\mathbf{a}+\mathbf{b}$ is defined by $\mathbf{a}+\mathbf{b}=<$ $a_{1}+b_{1}, a_{2}+b_{2}>$.

Multiplication of a vector by a scalar If c is a scalar and $\mathbf{a}=<a_{1}, a_{2}>$, then the vector is defined by

$$
c \mathbf{a}=<c a_{1}, c a_{2}>
$$

$$
|c \mathbf{a}|=c|\mathbf{a}|
$$

Two vectors \mathbf{a} and \mathbf{b} are called parallel if $\mathbf{b}=c \mathbf{a}$ for some scalar c.

By the difference of two vectors, we mean

$$
\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})
$$

so, if $\mathbf{a}=<a_{1}, a_{2}>$ and $\mathbf{b}=<b_{1}, b_{2}>$, then $\mathbf{a}-\mathbf{b}=<a_{1}-b_{1}, a_{2}-b_{2}>$.

Example 3. If $\mathbf{a}=<-1,2>$ and $\mathbf{b}=<-2,-1>$, find
(a) $\mathbf{a}+\mathbf{b}$
(b) $1 / 2 \mathbf{b}$
(c) $\mathbf{a}-\mathbf{b}$
(d) $|2 \mathbf{a}-5 \mathbf{b}|$

Properties of vectors. If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and k and m are scalars, then

1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
2. $k(\mathbf{a}+\mathbf{b})=k \mathbf{a}+k \mathbf{b}$
$2 . \mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\vec{c}$
3. $(k+m) \mathbf{a}=k \mathbf{a}+m \mathbf{a}$
4. $\mathbf{a}+\mathbf{0}=\mathbf{a}$
5. $(k m) \mathbf{a}=k(m \mathbf{a})$
6. $\mathbf{a}+(-\mathbf{a})=\mathbf{0}$
7. $1 \mathbf{a}=\mathbf{a}$

Let $\mathbf{i}=<1,0>$ and $\mathbf{i}=<0,1>$.

$$
|\mathbf{i}|=|\mathbf{i}|=1
$$

$\mathbf{a}=<a_{1}, a_{2}>=a_{1} \mathbf{i}+a_{2} \mathbf{i}$

Example 4. Express $\mathbf{a}=<2,4>, \mathbf{b}=<-1,3>$, and $2 \mathbf{a}+\mathbf{b}$ in terms of \mathbf{i} and \mathbf{j}.

A unit vector is a vector whose length is 1 .
A vector

$$
\mathbf{u}=\frac{1}{|\mathbf{a}|} \mathbf{a}=\left\langle\frac{a_{1}}{|\mathbf{a}|}, \frac{a_{2}}{|\mathbf{a}|}\right\rangle
$$

is a unit vector that has the same direction as $\mathbf{a}=<a_{1}, a_{2}>$.
Example 5. Given vectors $\mathbf{a}=\mathbf{i}-2 \mathbf{i}, \mathbf{b}=<-2,3>$. Find a unit vector \mathbf{u} that has the same direction as $2 \mathbf{b}+\mathbf{a}$.

Direction angles and direction cosines. The direction angles of a nonzero vector a are the angles α and β in the interval $[0, \pi]$ that a makes with the positive $x-$ and $y-$ axes. The cosines of these direction angles, $\cos \alpha$ and $\cos \beta$ are called the direction cosines of the vector \mathbf{a}.

$$
\cos \alpha=\frac{a_{1}}{|\mathbf{a}|}, \quad \cos \beta=\frac{a_{2}}{|\mathbf{a}|}, \quad \cos ^{2} \alpha+\cos ^{2} \beta=1
$$

We can write

$$
\mathbf{a}=<a_{1}, a_{2}>=|\mathbf{a}|<\cos \alpha, \cos \beta>
$$

Therefore

$$
\frac{1}{|\mathbf{a}|} \mathbf{a}=<\cos \alpha, \cos \beta>
$$

which says that the direction cosines of a are the components of the unit vector in the direction of \mathbf{a}.
Example 6. Let \mathbf{c} be the vector obtained by rotating $\mathbf{a}=<1,3>$ by an angle of 60 degrees in the counterclockwise direction. Compute the vector c.

Example 7. Two forces \vec{F}_{1} and \vec{F}_{2} with magnitudes 10 lb and 12 lb act on an object at a point P as shown in the figure. Find the resultant force \vec{F} acting at P as well as its magnitude and its direction.

