MATH 151, sections 819-821 Fall 2006 SAMPLE OF FINAL EXAM

1. Given vectors $\vec{a} = \vec{1} - 2\vec{j}$, $\vec{b} = <-2, 3>$. Find

- (a) a unit vector that has the same direction as \vec{b} .
- (b) $\operatorname{comp}_{\vec{h}}\vec{a}$, $\operatorname{proj}_{\vec{h}}\vec{a}$.

(c) Let \vec{c} be the vector obtained by rotating \vec{a} by an angle of 60 degrees in the counterclockwise direction. Compute the vector \vec{c} .

2. Find the limits (do not use the L'Hospitale's Rule).

(a)
$$\lim_{x \to -\infty} (\sqrt{x^2 + x + 1} - \sqrt{x^2 - x}).$$

(b)
$$\lim_{x \to 0} \frac{\sin x + \sin 2x}{\sin 3x}.$$

3. Find the vertical and horizonal asymptotes of the function $y = \frac{x^2+4}{x^2-1}$.

4. Find a vector equation and parametric equation for the line passing through the points (1,-3) and (-2,4). Find the distance from the point (1,1) to the given lane.

5. Find $\frac{dy}{dx}$ for each function

(a)
$$y = (\sin x)^{x^2}$$
.

(b)
$$y(t) = \sin^{-1} t$$
, $x(t) = \cos^{-1}(t^2)$.

(c) $2x^2 + 2xy + y^2 = x$.

6. Find the quadratic approximation of 1/x for x near 4.

7. Determine when the function $f(x) = e^{2x-x^2}$ is increasing, decreasing, concave up, concave down.

8. A box with a square base and open top must have a volume of $32,000 \ cm^3$. Find the dimensions of the box that minimize the amount of material used.

9. Use the L'Hospitale's Rule to find the limits:

- (a) $\lim_{x \to \infty} x^{\frac{1}{x}}$.
- (b) $\lim_{x \to 0} \left(\frac{1}{x} \csc x \right).$
- 10. Find the area under the curve $y = \sqrt{x}$ above the x-axis between 0 and 4.
- 11. Evaluate the indefinite integral $\int t^2 \cos(1-t^3) dt$.

12. Find the vector function $\vec{r}(t)$ that gives the position of a particle at time t having the acceleration $\vec{a}(t) = 2t\vec{i} + \vec{j}$, initial velocity $\vec{v}(t) = \vec{i} - \vec{j}$, an initial position $\vec{v}(t) = \vec{i}$.

- 13. Let $f(x) = \sqrt{x^2 1}$ and $g = f^{-1}$. Find
- (a) the domain and the range for g

(b) g'.