## MATH 151, sections 819-821

Fall 2006
SAMPLE OF FINAL EXAM

1. Given vectors $\vec{a}=\vec{\imath}-2 \vec{\jmath}, \vec{b}=<-2,3>$. Find
(a) a unit vector that has the same direction as $\vec{b}$.
(b) $\operatorname{comp}_{\vec{b}} \vec{a}, \operatorname{proj}_{\vec{b}} \vec{a}$.
(c) Let $\vec{c}$ be the vector obtained by rotating $\vec{a}$ by an angle of 60 degrees in the counterclockwise direction. Compute the vector $\vec{c}$.
2. Find the limits (do not use the L'Hospitale's Rule).
(a) $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}-x}\right)$.
(b) $\lim _{x \rightarrow 0} \frac{\sin x+\sin 2 x}{\sin 3 x}$.
3. Find the vertical and horizonal asymptotes of the function $y=\frac{x^{2}+4}{x^{2}-1}$.
4. Find a vector equation and parametric equation for the line passing through the points $(1,-3)$ and $(-2,4)$. Find the distance from the point $(1,1)$ to the given lane.
5. Find $\frac{d y}{d x}$ for each function
(a) $y=(\sin x)^{x^{2}}$.
(b) $y(t)=\sin ^{-1} t, x(t)=\cos ^{-1}\left(t^{2}\right)$.
(c) $2 x^{2}+2 x y+y^{2}=x$.
6. Find the quadratic approximation of $1 / x$ for $x$ near 4 .
7. Determine when the function $f(x)=e^{2 x-x^{2}}$ is increasing, decreasing, concave up, concave down.
8. A box with a square base and open top must have a volume of $32,000 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used.
9. Use the L'Hospitale's Rule to find the limits:
(a) $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}$.
(b) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\csc x\right)$.
10. Find the area under the curve $y=\sqrt{x}$ above the $x$-axis between 0 and 4 .
11. Evaluate the indefinite integral $\int t^{2} \cos \left(1-t^{3}\right) d t$.
12. Find the vector function $\vec{r}(t)$ that gives the position of a particle at time $t$ having the acceleration $\vec{a}(t)=2 t \vec{\imath}+\vec{\jmath}$, initial velocity $\vec{v}(t)=\vec{\imath}-\vec{\jmath}$, an initial position $\vec{v}(t)=\vec{\imath}$.
13. Let $f(x)=\sqrt{x^{2}-1}$ and $g=f^{-1}$. Find
(a) the domain and the range for $g$
(b) $g^{\prime}$.
