Chapter 1. Introduction to vectors and vector functions Section 1.1 Vectors

Definition. A two-dimensional vector is an ordered pair $\vec{a} = \langle a_1, a_2 \rangle$ of real numbers. The numbers a_1 and a_2 are called the **components** of \vec{a} .

A representation of the vector $\vec{a} = \langle a_1, a_2 \rangle$ is a directed line segment \vec{AB} from any point A(x, y) to the point $B(x + a_1, y + a_2)$.

A particular representation of $\vec{a} = \langle a_1, a_2 \rangle$ is the directed line segment \vec{OP} from the origin to the point $P(a_1, a_2)$, and $\vec{a} = \langle a_1, a_2 \rangle$ is called the **position vector** of the point $P(a_1, a_2)$.

Given the points $A(x_1, y_1)$ and $B(x_2, y_2)$, then $|\vec{AB}| = \langle x_2 - x_1, y_2 - y_1 \rangle$

The magnitude (length) $|\vec{a}|$ of \vec{a} is the length of any its representation.

The length of \vec{a} is $|\vec{a}| = \sqrt{a_1^2 + a_2^2}$

The length of the vector \vec{AB} from $A(x_1, y_1)$ to $B(x_2, y_2)$ is $|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

The only vector with length 0 is the **zero vector** $\vec{0} = \langle 0, 0 \rangle$. This vector is the only vector with no specific direction.

Vector addition If $\vec{a} = \langle a_1, a_2 \rangle$ and $\vec{b} = \langle b_1, b_2 \rangle$, then the vector $\vec{a} + \vec{b}$ is defined by $\vec{a} + \vec{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$.

Parallelogram Law

Triangular Law

Multiplication of a vector by a scalar If c is a scalar and $\vec{a} = \langle a_1, a_2 \rangle$, then the vector is defined by $c\vec{a} = \langle ca_1, ca_2 \rangle$.

$$|c\vec{a}| = c|\vec{a}|$$

Two vectors \vec{a} and \vec{b} are called **parallel** if $\vec{b} = c\vec{a}$ for some scalar c. If $\vec{a} = \langle a_1, a_2 \rangle$, $\vec{b} = \langle b_1, b_2 \rangle$, then \vec{a} and \vec{b} are parallel if and only if $\boxed{\frac{b_1}{a_1} = \frac{b_2}{a_2}}$. By the **difference** of two vectors, we mean $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$ so, if $\vec{a} = \langle a_1, a_2 \rangle$ and $\vec{b} = \langle b_1, b_2 \rangle$, then $\vec{a} - \vec{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$. **Properties of vectors** If \vec{a} , \vec{b} , and \vec{c} are vectors and k and m are scalars, then 1. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

2. $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ 3. $\vec{a} + \vec{0} = \vec{a}$ 4. $\vec{a} + (-\vec{a}) = \vec{0}$ 5. $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$ 6. $(k + m)\vec{a} = k\vec{a} + m\vec{a}$ 7. $(km)\vec{a} = k(m\vec{a})$ 8. $1\vec{a} = \vec{a}$

Let $\vec{i} = <1, 0 > \text{ and } \vec{j} = <0, 1 >, |\vec{i}| = |\vec{j}| = 1.$ $\vec{a} = <a_1, a_2 > = a_1\vec{i} + a_2\vec{j}$

A vector $\vec{u} = \frac{1}{|\vec{a}|}\vec{a} = \left\langle \frac{a_1}{|\vec{a}|}, \frac{a_2}{|\vec{a}|} \right\rangle$ is a unit vector that has the same direction as $\vec{a} = \langle a_1, a_2 \rangle$.

Section 1.2 The dot product

Definition. The **dot** or **scalar product** of two nonzero vectors \vec{a} and \vec{b} is the number $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ where θ is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \pi$. If either \vec{a} or \vec{b} is $\vec{0}$, we define $\vec{a} \cdot \vec{b} = 0$.

 $\vec{a} \cdot \vec{b} > 0$ if and only if $0 < \theta < \pi/2$ $\vec{a} \cdot \vec{b} < 0$ if and only if $\pi/2 < \theta < \pi$

Two nonzero vectors \vec{a} and \vec{b} are called **perpendicular** or **orthogonal** if the angle between them is $\pi/2$.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b} = 0$.

If
$$\vec{a} = \langle a_1, a_2 \rangle$$
 and $\vec{b} = \langle b_1, b_2 \rangle$, then $\boxed{\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2}$.

$$\boxed{\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}}$$

Properties of the dot product If \vec{a} , \vec{b} , an \vec{c} are vectors and k is a scalar, then $1 \vec{a} \cdot \vec{a} = |a|^2$

1.
$$\vec{a} \cdot \vec{a} = |\vec{a}|$$

2. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
3. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
4. $(k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b}) = \vec{a}(k\vec{b})$
5. $\vec{0} \cdot \vec{a} = 0$

 $\vec{PS} = \text{proj}_{\vec{a}}\vec{b}$ is called the vector projection of \vec{b} onto \vec{a} . $|\vec{PS}| = \text{comp}_{\vec{a}}\vec{b}$ is called the scalar projection of \vec{b} onto \vec{a} or the component of \vec{b} along

$$\operatorname{comp}_{\vec{a}}\vec{b} = \left|\frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}\right| \operatorname{proj}_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2}\vec{a} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2} < a_1, a_2 >$$

ā.

Definition Given the nonzero vector $\vec{a} = \langle a_1, a_2 \rangle$, the **orthogonal complement** of \vec{a} is the vector $\vec{a}^{\perp} = \langle -a_2, a_1 \rangle$.

Vectors \vec{a} and \vec{a}^{\perp} are orthogonal and $|\vec{a}| = |\vec{a}^{\perp}|$

The distance from the point P to the line $L PQ = \operatorname{comp}_{\vec{AB}^{\perp}} \vec{AP}$

Section 1.3 Vector functions

Definition The curve of a type x = x(t), y = y(t) is called a **parametric curve** and the variable t is called a **parameter**.

Definition Vector $\vec{r}(t) = \langle x(t), y(t) \rangle = x(t)\vec{i} + y(t)\vec{j}$ is called the **position vector** for the point with coordinates (x(t), y(t)).

A function such as $\vec{r}(t)$, whose range is a set of vectors, is called a **vector function** of t.

Sometimes we can convert the parametric equation of a curve to an equation involving only x and y; this form is called a *Cartesian equation*.

A line L is determined by a point $P_0(x_0, y_0)$ on L and a direction. Let $\vec{v} = \langle a, b \rangle$ be a vector parallel to line L. Let P(x, y) be be an arbitrary point on L and let $\vec{r_0} = \langle x_0, y_0 \rangle$ and $\vec{r} = \langle x(t), y(t) \rangle$ be the position vectors of P_0 and P. Then the vector equation of line L is

