Chapter 1. Introduction to vectors and vector functions

Section 1.1 Vectors
Definition. A two-dimensional vector is an ordered pair $\vec{a}=<a_{1}, a_{2}>$ of real numbers. The numbers a_{1} and a_{2} are called the components of \vec{a}.

A representation of the vector $\vec{a}=<a_{1}, a_{2}>$ is a directed line segment $\overrightarrow{A B}$ from any point $A(x, y)$ to the point $B\left(x+a_{1}, y+a_{2}\right)$.

A particular representation of $\vec{a}=<a_{1}, a_{2}>$ is the directed line segment $\overrightarrow{O P}$ from the origin to the point $P\left(a_{1}, a_{2}\right)$, and $\vec{a}=<a_{1}, a_{2}>$ is called the position vector of the point $P\left(a_{1}, a_{2}\right)$.

Given the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then $\overrightarrow{A B}=<x_{2}-x_{1}, y_{2}-y_{1}>$.
The magnitude (length) $|\vec{a}|$ of \vec{a} is the length of any its representation.
The length of \vec{a} is $|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}$
The length of the vector $\overrightarrow{A B}$ from $A\left(x_{1}, y_{1}\right)$ to $B\left(x_{2}, y_{2}\right)$ is $|\overrightarrow{A B}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
The only vector with length 0 is the zero vector $\overrightarrow{0}=<0,0>$. This vector is the only vector with no specific direction.

Vector addition If $\vec{a}=<a_{1}, a_{2}>$ and $\vec{b}=<b_{1}, b_{2}>$, then the vector $\vec{a}+\vec{b}$ is defined by $\vec{a}+\vec{b}=<a_{1}+b_{1}, a_{2}+b_{2}>$.

Parallelogram Law

Triangular Law

Multiplication of a vector by a scalar If c is a scalar and $\vec{a}=<a_{1}, a_{2}>$, then the vector is defined by $c \vec{a}=<c a_{1}, c a_{2}>$.
$|c \vec{a}|=c|\vec{a}|$
Two vectors \vec{a} and \vec{b} are called parallel if $\vec{b}=c \vec{a}$ for some scalar c. If $\vec{a}=<a_{1}, a_{2}>$, $\vec{b}=<b_{1}, b_{2}>$, then \vec{a} and \vec{b} are parallel if and only if $\frac{b_{1}}{a_{1}}=\frac{b_{2}}{a_{2}}$.

By the difference of two vectors, we mean $\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$
so, if $\vec{a}=<a_{1}, a_{2}>$ and $\vec{b}=<b_{1}, b_{2}>$, then $\vec{a}-\vec{b}=<a_{1}-b_{1}, a_{2}-b_{2}>$.

Properties of vectors If \vec{a}, \vec{b}, and \vec{c} are vectors and k and m are scalars, then

1. $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
2. $\vec{a}+(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c}$
3. $\vec{a}+\overrightarrow{0}=\vec{a}$
4. $\vec{a}+(-\vec{a})=\overrightarrow{0}$
5. $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$
6. $(k+m) \vec{a}=k \vec{a}+m \vec{a}$
7. $(k m) \vec{a}=k(m \vec{a})$
8. $1 \vec{a}=\vec{a}$

Let $\vec{\imath}=<1,0>$ and $\vec{\jmath}=<0,1>,|\vec{\imath}|=|\vec{\jmath}|=1 . \vec{a}=<a_{1}, a_{2}>=a_{1} \vec{\imath}+a_{2} \vec{\jmath}$

$a=<a_{1}, a_{2}>=a_{1} i+a_{2} j$

$a=\left\langle a_{1}, a_{2}>=\right| a \mid<\cos \alpha, \sin \alpha>$
$\alpha=\cos ^{-1}\left\{\frac{a_{1}}{|\vec{a}|}\right\}=\sin ^{-1}\left\{\frac{a_{2}}{|\vec{a}|}\right\}$
A unit vector is a vector whose length is 1 .
A vector $\vec{u}=\frac{1}{|\vec{a}|} \vec{a}=\left\langle\frac{a_{1}}{|\vec{a}|}, \frac{a_{2}}{|\vec{a}|}\right\rangle$ is a unit vector that has the same direction as $\vec{a}=<$ $a_{1}, a_{2}>$.

Section 1.2 The dot product

Definition. The dot or scalar product of two nonzero vectors \vec{a} and \vec{b} is the number $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$ where θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$. If either \vec{a} or \vec{b} is $\overrightarrow{0}$, we define $\vec{a} \cdot \vec{b}=0$.

$\vec{a} \cdot \vec{b}>0$ if and only if $0<\theta<\pi / 2$
$\vec{a} \cdot \vec{b}<0$ if and only if $\pi / 2<\theta<\pi$
Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\pi / 2$.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0$.
If $\vec{a}=<a_{1}, a_{2}>$ and $\vec{b}=<b_{1}, b_{2}>$, then $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}$.
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
Properties of the dot product If \vec{a}, \vec{b}, an \vec{c} are vectors and k is a scalar, then

1. $\vec{a} \cdot \vec{a}=|a|^{2}$
2. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
3. $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
4. $(k \vec{a}) \cdot \vec{b}=k(\vec{a} \cdot \vec{b})=\vec{a}(k \vec{b})$
5. $\overrightarrow{0} \cdot \vec{a}=0$

$\overrightarrow{P S}=\operatorname{proj}_{\vec{a}} \vec{b}$ is called the vector projection of \vec{b} onto \vec{a}.
$|\overrightarrow{P S}|=\operatorname{comp}_{\vec{a}} \vec{b}$ is called the scalar projection of \vec{b} onto \vec{a} or the component of \vec{b} along \vec{a}.
$\operatorname{comp}_{\vec{a}} \vec{b}=\left|\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right| \quad \operatorname{proj}_{\bar{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}<a_{1}, a_{2}>$
Definition Given the nonzero vector $\vec{a}=<a_{1}, a_{2}>$, the orthogonal complement of \vec{a} is the vector $\vec{a}^{\perp}=<-a_{2}, a_{1}>$.

Vectors \vec{a} and \vec{a}^{\perp} are orthogonal and $|\vec{a}|=\left|\vec{a}^{\perp}\right|$

Section 1.3 Vector functions

Definition The curve of a type $x=x(t), y=y(t)$ is called a parametric curve and the variable t is called a parameter.

Definition Vector $\vec{r}(t)=<x(t), y(t)>=x(t) \vec{\imath}+y(t) \vec{\jmath}$ is called the position vector for the point with coordinates $(x(t), y(t))$.

A function such as $\vec{r}(t)$, whose range is a set of vectors, is called a vector function of t.
Sometimes we can convert the parametric equation of a curve to an equation involving only x and y; this form is called a Cartesian equation.

A line L is determined by a point $P_{0}\left(x_{0}, y_{0}\right)$ on L and a direction. Let $\vec{v}=<a, b>$ be a vector parallel to line L. Let $P(x, y)$ be be an arbitrary point on L and let $\overrightarrow{r_{0}}=<x_{0}, y_{0}>$ and $\vec{r}=<x(t), y(t)>$ be the position vectors of P_{0} and P. Then the vector equation of line L is

$\vec{r}(t)=\overrightarrow{r_{0}}+t \vec{v}=<x_{0}+a t, y_{0}+b t>$
If $\vec{r}=<x(t), y(t)>, \vec{v}=<a, b>$ and $P\left(x_{0}, y_{0}\right)$ then parametric equations of the line L are $x(t)=x_{0}+a t, y(t)=y_{0}+b t$.

