Chapter 2. Limits and rates of change

Section 2.2. The limit of the function

Definition We write $\lim _{x \rightarrow a} f(x)=L$ and say "the limit of $f(x)$, as x approaches a, equals L " if we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently close to a but not equal to a.

Definition We write $\lim _{x \rightarrow a^{-}} f(x)=L$ and say the left-handed limit of $f(x)$ as x approaches a (or the limit of $f(x)$ as x approaches a from the left), equals L if we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently close to a and $x<a$.

Definition We write $\lim _{x \rightarrow a^{+}} f(x)=L$ and say the right-handed limit of $f(x)$ as x approaches a (or the limit of $f(x)$ as x approaches a from the right), equals L if we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently close to a and $x>a$.

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if } \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L
$$

Definition Let f be a function defined on both sides of a, except, possibly at a itself. Then $\lim _{x \rightarrow a} f(x)=\infty$ means that the values of $f(x)$ can be made arbitrary large by taking x to be sufficiently close to a but not equal to a.

Definition Let f be a function defined on both sides of a, except, possibly at a itself. Then $\lim _{x \rightarrow a} f(x)=-\infty$ means that the values of $f(x)$ can be made arbitrary large negative by taking x to be sufficiently close to a but not equal to a.

Definition The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:

$$
\begin{array}{|ccc|}
\hline \lim _{x \rightarrow a} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty & \lim _{x \rightarrow a^{-}} f(x)=\infty \\
\lim _{x \rightarrow a} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty & \lim _{x \rightarrow a^{-}} f(x)=-\infty \\
\hline
\end{array}
$$

Definition We write $\lim _{t \rightarrow a} \vec{r}(t)=\vec{b}$ and say "the limit of $\vec{r}(t)$, as t approaches a, equals \vec{b} " if we can make vector $\vec{r}(t)$ arbitrary close to \vec{b} by taking t to be sufficiently close to a but not equal to a.

If $\vec{r}(t)=<f(t), g(t)>$, then $\lim _{t \rightarrow a} \vec{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t)\right\rangle$
provided the limits of the component functions exist.

Section 2.3 Calculating limits using the limit laws

Limit laws Suppose that c is a constant and the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Then

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ where n is a positive integer
7. $\lim _{x \rightarrow a} c=c \quad$ 8. $\lim _{x \rightarrow a} x=a$
8. $\lim _{x \rightarrow a} x^{n}=a^{n}$ where n is a positive integer
9. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$ where n is a positive integer
10. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ where n is a positive integer

If f is a polynomial or a rational function and a is in the domain of f, then $\lim _{x \rightarrow a} f(x)=f(a)$
Theorem If $f(x) \leq g(x)$ for all x in an open interval that contains a (except possibly at a) and the limits of f an g both exist as x approaches a, then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$

The Squeeze Theorem If $f(x) \leq g(x) \leq h(x)$ for all x in an open interval that contains a (except possibly at a) and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$

Section 2.5 Continuity

Definition A function f is continuous at a number a if $\lim _{x \rightarrow a} f(x)=f(a)$.
If f is not continuous at a, then f has discontinuity at a.
If $\lim _{x \rightarrow a^{+}} f(x) \neq \lim _{x \rightarrow a^{-}} f(x)$, then f has a jump discontinuity at a,
if either $\lim _{x \rightarrow a^{+}} f(x)=\infty$ or $\lim _{x \rightarrow a^{-}} f(x)=\infty$, then f has an infinity discontinuity at a and we say line $x=a$ is a vertical asymptote of the curve $y=f(x)$
and if $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x) \neq f(a)$, then f has a removable discontinuity at a
Definition A function f is continuous from the right at a number a if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$, f is continuous from the left at a number a if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$.

Definition A function f is continuous on an interval if it is continuous at every number in the interval. (At an endpoint of the interval we understand continuous to mean continuous from the right or continuous from the left.)

Theorem If f and g are continuous at a and c is a constant, then the following functions are also continuous at a :

1. $f+g$
2. $f+g$
3. $c f$
4. $f g$
5. $\frac{f}{g}$ if $g(a) \neq 0$

Theorem
(a) Any polynomial is continuous on $(-\infty, \infty)$
(b) Any rational function is continuous on its domain

Theorem If n is a positive even integer, then $f(x)=\sqrt[n]{x}$ is continuous on $[0, \infty)$. If n is a positive odd integer, then f is continuous on $(-\infty, \infty)$.

Theorem If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then
$\lim _{x \rightarrow a} f(g(x))=f(b)=f\left(\lim _{x \rightarrow a} g(x)\right)$
Theorem If g is continuous at a and f is continuous at $g(a)$, then $(f \circ g)(x)=f(g(x))$ is continuous at a.

The intermediate value theorem Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number strictly between $f(a)$ and $f(b)$. Then there exist a number c in (a, b) such that $f(c)=N$.

Section 2.6 Limits at infinity; horizontal asymptotes
Definition Let f be a function defined on (a, ∞). Then $\lim _{x \rightarrow \infty} f(x)=L$ means that we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently large.

Definition Let f be a function defined on $(-\infty, a)$. Then $\lim _{x \rightarrow-\infty} f(x)=L$ means that we can make values of $f(x)$ arbitrary close to L by taking x to be sufficiently large negative.

Definition The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$.

Limit laws Suppose that c is a constant and the limits $\lim _{x \rightarrow \pm \infty} f(x)$ and $\lim _{x \rightarrow \pm \infty} g(x)$ exist. Then

1. $\lim _{x \rightarrow \pm \infty}[f(x)+g(x)]=\lim _{x \rightarrow \pm \infty} f(x)+\lim _{x \rightarrow \pm \infty} g(x)$
2. $\lim _{x \rightarrow \pm \infty}[f(x)-g(x)]=\lim _{x \rightarrow \pm \infty} f(x)-\lim _{x \rightarrow \pm \infty} g(x)$
3. $\lim _{x \rightarrow \pm \infty} c f(x)=c \lim _{x \rightarrow \pm \infty} f(x)$
4. $\lim _{x \rightarrow \pm \infty} f(x) g(x)=\lim _{x \rightarrow \pm \infty} f(x) \cdot \lim _{x \rightarrow \pm \infty} g(x)$
5. $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \pm \infty} f(x)}{\lim _{x \rightarrow \pm \infty} g(x)}$ if $\lim _{x \rightarrow \pm \infty} g(x) \neq 0$
6. $\lim _{x \rightarrow \pm \infty}[f(x)]^{n}=\left[\lim _{x \rightarrow \pm \infty} f(x)\right]^{n}$ where n is a positive integer
7. $\lim _{x \rightarrow \pm \infty} c=c$
8. $\lim _{x \rightarrow \pm \infty} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow \pm \infty} f(x)}$ where n is a positive integer

Theorem If $r>0$ is a rational number, then $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0$
$\lim _{x \rightarrow \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\ldots+b_{1} x+b_{0}}= \begin{cases}\frac{a_{n}}{b_{m}}, & \text { if } n=m \\ 0, & \text { if } n<m \\ \infty, & \text { if } n>m\end{cases}$

Section 2.7 Tangents, velocities, and other rates of change

The tangent line

Let $f(x)$ be a function and suppose a is in domain of f
Definition A tangent line is a line that touches a curve $y=f(x)$ at a point $(a, f(a))$ without cross over.

Problem Find the equation of the tangent line to the curve $y=f(x)$ at the point $(a, f(a))$.
The equation of the tangent line to the curve $y=f(x)$ at the point $(a, f(a))$ is $y-f(a)=m(x-a)$, where

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Tangent vectors

Let $\vec{r}(t)=<x(t), y(t)>$ be a vector function.
Problem Find a tangent vector to a curve traced by $\vec{r}(t)$ at the point P corresponding to the vector $\vec{r}(a)=<x(a), y(a)>$.

The tangent vector to a curve traced by $\vec{r}(t)$ at the point P corresponding to the vector $\vec{r}(a)=<x(a), y(a)>$ is given by $\vec{v}=\lim _{t \rightarrow a} \frac{1}{t-a}[\vec{r}(t)-\vec{r}(a)]=\lim _{h \rightarrow 0} \frac{1}{h}[\vec{r}(a+h)-\vec{r}(a)]$

Then the equation of the tangent line to a curve traced by $\vec{r}(t)$ at the point P corresponding to the vector $\vec{r}(a)=<x(a), y(a)>$ is given by $\vec{L}(t)=\vec{r}(a)+t \vec{v}$

Velocity

Suppose an object moves along a straight line according to an equation of motion $s=f(t)$, where s is the displacement of the object from the origin at time t. Function f is called the position function of the object.

$$
\text { average velocity }=\frac{\text { displacement }}{\text { time }}=\frac{f(a+h)-f(a)}{h}
$$

Then the velocity or instantaneous velocity at time $t=a$ is $v(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
Suppose an object moves in the $x y$-plane in such a way that its position at time t is given by the position vector $\vec{r}(t)=<x(t), y(t)>$.

$$
\text { average velocity }=\frac{\vec{r}(a+h)-\vec{r}(h)}{h}=\frac{1}{h}[\vec{r}(a+h)-\vec{r}(a)]
$$

The instantaneous velocity $\vec{v}(t)$ at the time $t=a$ is $\vec{v}(a)=\lim _{h \rightarrow 0} \frac{\vec{r}(a+h)-\vec{r}(a)}{h}$
The speed of a particle is defined to be the magnitude of the velocity vector.

Other rates of change

Suppose y is a quantity that depends on another quantity x or $y=f(x)$. If x changes from x_{1} to x_{2}, then the change in x (also called the increment of x) is $\Delta x=x_{2}-x_{1}$ and the corresponding change in y is $\Delta x=f\left(x_{2}\right)-f\left(x_{1}\right)$. The difference quotient $\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$ is called the average rate of change of y with respect to x over the interval $\left[x_{1}, x_{2}\right]$.

The instantaneous rate of change of y with respect to x at $x=x_{1}$ is equal to $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$

