Chapter 2. Limits and rates of change Section 2.2. The limit of the function

Definition We write $\lim_{x \to a} f(x) = L$ and say "the limit of f(x), as x approaches a, equals L" if we can make values of f(x) arbitrary close to L by taking x to be sufficiently close to a but not equal to a.

Definition We write $\lim_{x \to a^-} f(x) = L$ and say the left-handed limit of f(x) as x approaches a (or the limit of f(x) as x approaches a from the left), equals L if we can make values of f(x) arbitrary close to L by taking x to be sufficiently close to a and x < a.

Definition We write $\lim_{x \to x^+} f(x) = \overline{L}$ and say the **right-handed limit of** f(x) as x $x \rightarrow a^+$ approaches a (or the limit of f(x) as x approaches a from the right), equals L if we can make values of f(x) arbitrary close to L by taking x to be sufficiently close to a and x > a.

$$\lim_{x \to a} f(x) = L \text{ if and only if } \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$$

Definition Let f be a function defined on both sides of a, except, possibly at a itself. Then $\lim f(x) = \infty$ means that the values of f(x) can be made arbitrary large by taking x to be sufficiently close to a but not equal to a.

Definition Let f be a function defined on both sides of a, except, possibly at a itself. Then $\lim f(x) = -\infty$ means that the values of f(x) can be made arbitrary large negative by taking x to be sufficiently close to a but not equal to a.

Definition The line x = a is called a **vertical asymptote** of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty \qquad \lim_{x \to a^+} f(x) = \infty \qquad \lim_{x \to a^-} f(x) = \infty$$
$$\lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a^+} f(x) = -\infty \qquad \lim_{x \to a^-} f(x) = -\infty$$

Definition We write $\lim_{t\to a} \vec{r}(t) = \vec{b}$ and say "the limit of $\vec{r}(t)$, as t approaches a, equals \vec{b} " if we can make vector $\vec{r}(t)$ arbitrary close to \vec{b} by taking t to be sufficiently close to a but not equal to a.

If
$$\vec{r}(t) = \langle f(t), g(t) \rangle$$
, then $\lim_{t \to a} \vec{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t) \right\rangle$

provided the limits of the component functions exist.

Section 2.3 Calculating limits using the limit laws

Limit laws Suppose that c is a constant and the limits $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist. Then

- 1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ 2. $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$ 3. $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$ 4. $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n \text{ where } n \text{ is a positive integer}$$

7.
$$\lim_{x \to a} c = c \qquad 8. \lim_{x \to a} x = a$$

9.
$$\lim_{x \to a} x^n = a^n \text{ where } n \text{ is a positive integer}$$

10.
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a} \text{ where } n \text{ is a positive integer}$$

11.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \text{ where } n \text{ is a positive integer}$$

If f is a polynomial or a rational function and a is in the domain of f, then $\lim f(x) = f(a)$

Theorem If $f(x) \leq g(x)$ for all x in an open interval that contains a (except possibly at a) and the limits of f an g both exist as x approaches a, then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$

The Squeeze Theorem If $f(x) \le g(x) \le h(x)$ for all x in an open interval that contains a (except possibly at a) and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\boxed{\lim_{x \to a} g(x) = L}$

Section 2.5 Continuity

Definition A function f is continuous at a number a if $\lim_{x \to a} f(x) = f(a)$

If f is not continuous at a, then f has discontinuity at a.

If $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x)$, then f has a jump discontinuity at a,

if either $\lim_{x \to a^+} f(x) = \infty$ or $\lim_{x \to a^-} f(x) = \infty$, then f has an *infinity discontinuity* at a and we say line x = a is a vertical asymptote of the curve y = f(x)

and if $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) \neq f(a)$, then f has a removable discontinuity at a

Definition A function f is continuous from the right at a number a if $\lim_{x \to a^+} f(x) = f(a)$, f is continuous from the left at a number a if $\lim_{x \to a^-} f(x) = f(a)$.

Definition A function f is **continuous on an interval** if it is continuous at every number in the interval. (At an endpoint of the interval we understand *continuous* to mean *continuous* from the right or continuous from the left.)

Theorem If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1. f+g 2. f+g 3. cf 4. fg 5. $\frac{f}{g}$ if $g(a) \neq 0$

Theorem

(a) Any polynomial is continuous on $(-\infty, \infty)$

(b) Any rational function is continuous on its domain

Theorem If n is a positive even integer, then $f(x) = \sqrt[n]{x}$ is continuous on $[0, \infty)$. If n is a positive odd integer, then f is continuous on $(-\infty, \infty)$.

Theorem If f is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b) = f\left(\lim_{x \to a} g(x)\right)$

Theorem If g is continuous at a and f is continuous at g(a), then $(f \circ g)(x) = f(g(x))$ is continuous at a.

The intermediate value theorem Suppose that f is continuous on the closed interval [a, b] and let N be any number strictly between f(a) and f(b). Then there exist a number c in (a, b) such that f(c) = N.

Section 2.6 Limits at infinity; horizontal asymptotes

Definition Let f be a function defined on (a, ∞) . Then $\lim_{x\to\infty} f(x) = L$ means that we can make values of f(x) arbitrary close to L by taking x to be sufficiently large.

Definition Let f be a function defined on $(-\infty, a)$. Then $\lim_{x \to -\infty} f(x) = L$ means that we can make values of f(x) arbitrary close to L by taking x to be sufficiently large negative.

Definition The line y = L is called a **horizontal asymptote of the curve** y = f(x) if either $\lim_{x \to \infty} f(x) = L$ or $\lim_{x \to -\infty} f(x) = L$.

Limit laws Suppose that c is a constant and the limits $\lim_{x\to\pm\infty} f(x)$ and $\lim_{x\to\pm\infty} g(x)$ exist. Then

1.
$$\lim_{x \to \pm \infty} [f(x) + g(x)] = \lim_{x \to \pm \infty} f(x) + \lim_{x \to \pm \infty} g(x)$$

2.
$$\lim_{x \to \pm \infty} [f(x) - g(x)] = \lim_{x \to \pm \infty} f(x) - \lim_{x \to \pm \infty} g(x)$$

3.
$$\lim_{x \to \pm \infty} cf(x) = c \lim_{x \to \pm \infty} f(x)$$

4.
$$\lim_{x \to \pm \infty} f(x)g(x) = \lim_{x \to \pm \infty} f(x) \cdot \lim_{x \to \pm \infty} g(x)$$

5.
$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \pm \infty} f(x)}{\lim_{x \to \pm \infty} g(x)} \text{ if } \lim_{x \to \pm \infty} g(x) \neq 0$$

6.
$$\lim_{x \to \pm \infty} [f(x)]^n = \left[\lim_{x \to \pm \infty} f(x)\right]^n \text{ where } n \text{ is a positive integer}$$

7.
$$\lim_{x \to \pm \infty} c = c$$

11.
$$\lim_{x \to \pm \infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to \pm \infty} f(x)} \text{ where } n \text{ is a positive integer}$$

Theorem If $x \ge 0$ is a rational number, then $1 \text{ im } \frac{1}{2} - 1 \text{ im } \frac{1}{2}$

Theorem If r > 0 is a rational number, then $\lim_{x \to \infty} \frac{1}{x^r} = \lim_{x \to -\infty} \frac{1}{x^r} = 0$

$$\lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0} = \begin{cases} \frac{a_n}{b_m}, & \text{if } n = m\\ 0, & \text{if } n < m\\ \infty, & \text{if } n > m \end{cases}$$

Section 2.7 Tangents, velocities, and other rates of change

The tangent line

Let f(x) be a function and suppose a is in domain of f

Definition A tangent line is a line that touches a curve y = f(x) at a point (a, f(a)) without cross over.

Problem Find the equation of the tangent line to the curve y = f(x) at the point (a, f(a)).

The equation of the tangent line to the curve y = f(x) at the point (a, f(a)) is y - f(a) = m(x - a)where $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Tangent vectors

Let $\vec{r}(t) = \langle x(t), y(t) \rangle$ be a vector function.

Problem Find a tangent vector to a curve traced by $\vec{r}(t)$ at the point *P* corresponding to the vector $\vec{r}(a) = \langle x(a), y(a) \rangle$.

The tangent vector to a curve traced by $\vec{r}(t)$ at the point P corresponding to the vector $\vec{r}(a) = \langle x(a), y(a) \rangle$ is given by $v = \lim_{t \to a} \frac{1}{t-a} [\vec{r}(t) - \vec{r}(a)] = \lim_{h \to 0} \frac{1}{h} [\vec{r}(a+h) - \vec{r}(a)]$

Then the equation of the tangent line to a curve traced by $\vec{r}(t)$ at the point *P* corresponding to the vector $\vec{r}(a) = \langle x(a), y(a) \rangle$ is given by $\vec{L}(t) = \vec{r}(a) + t\vec{v}$

Velocity

Suppose an object moves along a straight line according to an equation of motion s = f(t), where s is the displacement of the object from the origin at time t. Function f is called the **position function** of the object.

average velocity
$$= \frac{\text{displacement}}{\text{time}} = \frac{f(a+h) - f(a)}{h}$$

Then the velocity or instantaneous velocity at time t = a is $v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Suppose an object moves in the xy-plane in such a way that its position at time t is given by the position vector $\vec{r}(t) = \langle x(t), y(t) \rangle$.

average velocity
$$= \frac{\vec{r}(a+h) - \vec{r}(h)}{h} = \frac{1}{h} [\vec{r}(a+h) - \vec{r}(a)]$$

The instantaneous velocity $\vec{v}(t)$ at the time t = a is $\vec{v}(a) = \lim_{h \to 0} \frac{\vec{r}(a+h) - \vec{r}(a)}{h}$

The **speed** of a particle is defined to be the magnitude of the velocity vector.

Other rates of change

Suppose y is a quantity that depends on another quantity x or y = f(x). If x changes from x_1 to x_2 , then the change in x (also called the **increment** of x) is $\Delta x = x_2 - x_1$ and the corresponding change in y is $\Delta x = f(x_2) - f(x_1)$. The difference quotient $\Delta y = \frac{f(x_2) - f(x_1)}{\Delta x}$ is called the **average rate of change of** y with respect to x over the interval $[x_1, x_2]$.

The instantaneous rate of change of y with respect to x at $x = x_1$ is equal to $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$