Math 152, Fall 2008 Lecture 2.

08/28/2008

Example 1. Evaluate each integral.

(a)
$$\int_{1}^{4} \frac{1}{x^2} \sqrt{1 + \frac{1}{x}} dx$$
 (b) $\int_{e}^{e^4} \frac{dx}{x\sqrt{\ln x}}$
(c) $\int \frac{\sin x}{1 + \cos^2 x} dx$ (d) $\int t^2 \cos(1 - t^3) dt$

(e)
$$\int_{-\pi/2}^{\pi/2} \frac{x^2 \sin x}{1 + x^6} dx$$
 (f) $\int \frac{dx}{x^2 + a^2}$

(j)
$$\int \frac{\arcsin x + x}{\sqrt{1 - x^2}} dx$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = ∽ ۹ < ↔

Chapter 7. Applications of integration Section 7.1 Areas between curves

Consider the region S that lies between two curves y = f(x) and y = g(x) and between the vertical lines x = a and x = b, where f and g are continuous functions and $f(x) \ge g(x)$ for all x in [a, b].

Let *P* be a partition of [a, b] by points x_i and choose points x_i^* in $[x_{i-1}, x_i]$. Let $\Delta x_i = x_i - x_{i-1}$ and $||P|| = \max{\{\Delta x_i\}}$. The Riemann sum $\sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)]\Delta x_i$ is an approximation to what we intuitively think as the area of *S*. This approximation appears to become better and better as $||P|| \rightarrow 0$. We define the area *A* of *S* as $A = \lim_{||P|| \rightarrow 0} \sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)]\Delta x_i$ Therefore:

The area of the region bounded by the curves y = f(x), y = g(x), and the lines x = a and x = b, where f and g are continuous functions and $f(x) \ge g(x)$ for all x in [a, b], is

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

Example 2. Find the area of the region bounded by the parabolas $y = 4x^2$, $y = x^2 + 3$

In general case, the area between the curves y = f(x), y = g(x)and between x = a and x = b, is $A = \int_{a}^{b} |f(x) - g(x)| dx$

Example 3. Find the area of the region bounded by the curves $y = \cos x$, $y = \sin 2x$ and the lines x = 0 and $x = \pi/2$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example 4. Find the area of the shaded region.

If a region is bounded by curves with equations x = f(y), x = g(y), y = c and y = d, where f and g are continuous functions and $f(y) \ge g(y)$ for all y in [c, d], then its area is

$$A = \int_{c}^{d} [f(y) - g(y)] dy$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆