Math 152, Fall 2008

Lecture 2.

08/28/2008

Example 1. Evaluate each integral.
(a) $\int_{1}^{4} \frac{1}{x^{2}} \sqrt{1+\frac{1}{x}} d x$
(b) $\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}}$
(c) $\int \frac{\sin x}{1+\cos ^{2} x} d x$
(d) $\int t^{2} \cos \left(1-t^{3}\right) d t$
(e) $\int^{\pi / 2} \frac{x^{2} \sin x}{1+x^{6}} d x$
(f) $\int \frac{d x}{x^{2}+a^{2}}$
(j) $\int \frac{\arcsin x+x}{\sqrt{1-x^{2}}} d x$

Chapter 7. Applications of integration

Section 7.1 Areas between curves

Consider the region S that lies between two curves $y=f(x)$ and $y=g(x)$ and between the vertical lines $x=a$ and $x=b$, where f and g are continuous functions and $f(x) \geq g(x)$ for all x in $[a, b]$.

$$
S=\{(x, y): a \leq x \leq b, g(x) \leq y \leq f(x)\}
$$

Let P be a partition of $[a, b]$ by points x_{i} and choose points x_{i}^{*} in $\left[x_{i-1}, x_{i}\right]$. Let $\Delta x_{i}=x_{i}-x_{i-1}$ and $\|P\|=\max \left\{\Delta x_{i}\right\}$.
The Riemann sum $\sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x_{i}$ is an approximation to what we intuitively think as the area of S.
This approximation appears to become better and better as $\|P\| \rightarrow 0$. We define the area A of S as
$A=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x_{i}$ Therefore:
The area of the region bounded by the curves $y=f(x), y=g(x)$, and the lines $x=a$ and $x=b$, where f and g are continuous functions and $f(x) \geq g(x)$ for all x in $[a, b]$, is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example 2. Find the area of the region bounded by the parabolas $y=4 x^{2}, y=x^{2}+3$

In general case, the area between the curves $y=f(x), y=g(x)$
and between $x=a$ and $x=b$, is $A=\int_{a}^{b}|f(x)-g(x)| d x$
Example 3. Find the area of the region bounded by the curves $y=\cos x, y=\sin 2 x$ an the lines $x=0$ and $x=\pi / 2$.

Example 4. Find the area of the shaded region.

If a region is bounded by curves with equations $x=f(y)$, $x=g(y), y=c$ and $y=d$, where f and g are continuous functions and $f(y) \geq g(y)$ for all y in $[c, d]$, then its area is $A=\int_{c}^{d}[f(y)-g(y)] d y$

