Math 152, Fall 2008

Lecture 3.

09/02/2008

Chapter 7. Applications of integration Section 7.1 Areas between curves

The area of the region S that lies between two curves $y=f(x)$ and $y=g(x)$ and between the vertical lines $x=a$ and $x=b$, is $A=\int_{a}^{b}|f(x)-g(x)| d x$

Fig. $1 \quad S=\{(x, y): a \leq x \leq b, g(x) \leq y \leq f(x)\}$

If a region is bounded by curves with equations $x=f(y)$, $x=g(y), y=c$ and $y=d$, where f and g are continuous functions and $f(y) \geq g(y)$ for all y in $[c, d]$, then its area is $A=\int_{c}^{d}[f(y)-g(y)] d y$

Fig. $2 \quad S=\{(x, y): g(y) \leq x \leq f(y), c \leq y \leq d\}$

Example 1. Find the area of the region bounded by
(a) $y=\frac{1}{1+x^{2}}$ and $y=\frac{x^{2}}{2}$
(b) $x=y^{3}-y$ and $x=1-y^{4}$ (see Fig.3)

Fig. 3

Section 7.2 Volume

We start with a simple type of solid called a cylinder. A cylinder is bounded by a plane region B_{1}, called the base, and a congruent region B_{2} in a parallel plane. The cylinder consists of all points on line segments perpendicular to the base that join B_{1} and B_{2}. If the area of the base is A and the height of the cylinder is h, then the volume of the cylinder is defined as $V=A h$.

Let S be any solid. The intersection of S with a plane is a plane region that is called a cross-section of S. Suppose that the area of the cross-section of S in a plane P_{x} perpendicular to the x-axis and passing through the point x is $A(x)$, where $a \leq x \leq b$.

Let's consider a partition P of $[a, b]$ by points x_{i} such that $a=x_{0}<x_{1}<\ldots<x_{n}=b$. The planes $P_{x_{i}}$ will slice S into smaller "slabs". If we choose x_{i}^{*} in $\left[x_{i-1}, x_{i}\right]$, we can approximate the i th slab S_{i} (the part of S between $P_{x_{i-1}}$ and $P_{x_{i}}$) by a cylinder with base area $A\left(x_{i}^{*}\right)$ and height $\Delta x_{i}=x_{i}-x_{i-1}$.

The volume of this cylinder is $A\left(x_{i}^{*}\right) \Delta x_{i}$, so the approximation to volume of the i th slab is $V\left(S_{i}\right) \approx A\left(x_{i}^{*}\right) \Delta x_{i}$. Thus, the approximation to the volume of S is $V \approx \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x_{i}$. This approximation appears to become better and better as $\|P\| \rightarrow 0$.

Definition of volume Let S be a solid that lies between the planes P_{a} and P_{b}. If the cross-sectional area of S in the plane P_{x} is $A(x)$, where A is an integrable function, then the volume of S
is

$$
V=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x_{i}=\int_{a}^{b} A(x) d x
$$

IMPORTANT. $A(x)$ is the area of a moving cross-sectional obtained by slicing through x perpendicular to the x-axis.

Example 2. Find the volume of a right circular cone with height h and base radius r.

Let S be the solid obtained by revolving the plane region \mathcal{R} bounded by $y=f(x), y=0, x=a$, and $x=b$ about the x-axis. A cross-section through x perpendicular to the x-axis is a circular disc with radius $|y|=|f(x)|$, the cross-sectional area is $A(x)=\pi y^{2}=\pi[f(x)]^{2}$, thus, we have the following formula for a volume of revolution:

$$
V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

The region bounded by the curves $x=g(y), x=0, y=c$, and $y=d$ is rotated about the y-axis, then the corresponding volume of revolution is $V=\pi \int_{c}^{d}[g(y)]^{2} d y$

Let S be the solid generated when the region bounded by the curves $y=f(x), y=g(x), x=a$, and $x=b$ (where $f(x) \geq g(x)$ for all x in $[a, b])$ is rotated about the x-axis. Then the volume of
S is $V=\pi \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x$

Example 3.

(a) Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}+1, y=3-x^{2}$ about the x-axis.
(b) Find the volume of the solid obtained by rotating the region bounded by $y=2 x-x^{2}, y=0, x=0, x=1$ about the y-axis.
(c) Find the volume of the solid obtained by rotating the region bounded by $y=x^{4}, y=1$ about $y=2$.

Example 4. Find the volume of a frustum of a pyramid with square base of side b, square top of side a, and height h.

