Math 152, Fall 2008 Lecture 4.

09/04/2008

Chapter 7. Applications of integration Section 7.2 Volume

Definition of volume Let *S* be a solid that lies between the planes P_a and P_b . If the cross-sectional area of *S* in the plane P_x is A(x), where *A* is an integrable function, then the **volume** of *S*

is
$$V = \int_{a}^{b} A(x) dx$$

Let S be the solid obtained by revolving the plane region \mathcal{R} bounded by y = f(x), y = 0, x = a, and x = b about the x-axis. We have the following **formula for a volume of revolution:**

$$V = \pi \int_{a}^{b} [f(x)]^2 dx$$

The region bounded by the curves x = g(y), x = 0, y = c, and y = d is rotated about the y-axis, then the corresponding volume of revolution is $V = \pi \int_{c}^{d} [g(y)]^2 dy$

Let *S* be the solid generated when the region bounded by the curves $y = f_1(x)$, $y = f_2(x)$, x = a, and x = b (where $f_1(x) \ge f_2(x)$ for all x in [a, b]) is rotated about the x-axis. Then the volume of *S* is $V = \pi \int_{a}^{b} \{[f_1(x)]^2 - [f_2(x)]^2\} dx$

The region bounded by the curves $x = g_1(y)$, $x = g_2(x)$, y = c, and y = d (where $g_1(x) \ge g_2(x)$ for all y in [c, d]) is rotated about the y-axis, then the corresponding volume of revolution is

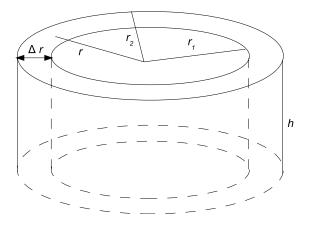
$$V = \pi \int_{c}^{d} \{ [g_1(y)]^2 - [g_2(y)]^2 \} dy$$

Example 1. Find the volume of the solid obtained by rotating the region bounded by $y = x^4$, y = 1 about y = 2.

Example 2. Find the volume of a frustum of a pyramid with square base of side *b*, square top of side *a*, and height *h*.

Section 7.3 Volumes by cylindrical shells

Lets find the volume V of a cylindrical shell with inner radius r_1 , outer radius r_2 , and height h (see Fig.1).



(日)

3

V can be calculated by subtracting the volume V_1 of the inner cylinder from the volume V_2 of the outer cylinder:

$$V = V_2 - V_1 = \pi h(r_2^2 - r_1^2) = 2\pi h \frac{r_2 + r_1}{2}(r_2 - r_1)$$

Let $\Delta r = r_2 - r_1$, $r = (r_2 + r_1)/2$, then the volume of a cylindrical shell is $V = 2\pi r h \Delta r$

Now let *S* be the solid obtained by rotating about the *y*-axis the region bounded by $y = f(x) \ge 0$, y = 0, x = a, and x = b, where $b > a \ge 0$. Let *P* be a partition of [a, b] by points x_i such that $a = x_0 < x_1 < ... < x_n = b$ and let x_i^* be the midpoint of $[x_{i-1}, x_i]$, that is $x_i^* = (x_{i-1} + x_i)/2$. If the rectangle with base $[x_{i-1}, x_i]$ and height $f(x_i^*)$ is rotated about the *y*-axis, then the result is a cylindrical shell with average raduis x_i^* , height $f(x_i^*)$, and thikness $\Delta x_i = x_i - x_{i-1}$, so its volume is $V_i = 2\pi x_i^* f(x_i^*)\Delta x_i$.

The approximation to the volume V of S is

 $V \approx \sum_{i=1}^{n} 2\pi x_i^* f(x_i^*) \Delta x_i$. This approximation appears to become

better and better as $||P|| \rightarrow 0$. Thus, the volume of *S* is

$$V = \lim_{\|P\| \to 0} \sum_{i=1}^{n} 2\pi x_i^* f(x_i^*) \Delta x_i = 2\pi \int_a^b x f(x) dx$$

Example 3. Find the volume of the solid obtained by rotating the region bounded by $y = 2x - x^2$, y = 0, x = 0, x = 1 about the *y*-axis.

The volume of the solid generated by rotating about the y-axis the region between the curves y = f(x) and y = g(x) from a to b

$$[f(x) \ge g(x) \text{ and } 0 \le a < b]$$
 is $V = 2\pi \int_{a}^{b} x[f(x) - g(x)]dx$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example 4. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$, y = 4, x = 0 about the *y*-axis.

The method of cylindrical shells also allows us to compute volumes of revolution about the x-axis. If we interchange the roles of x and y in the formula for the volume, then the volume of the solid generated by rotating the region bounded by x = g(y), x = 0,

$$y = c$$
, and $y = d$ about the x-axis, is $V = 2\pi \int_{c}^{d} yg(y)dy$.

Example 5. Find the volume of the solid obtained by rotating the region bounded by $y^2 - 6y + x = 0$, x = 0 about the x-axis.

Example 6. Find the volume of the solid obtained by rotating the region bounded by $y = 4x - x^2$, $y = 8x - 2x^2$ about x = -2.