Math 152, Fall 2008 Lecture 6.

09/11/2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

Help Sessions:

Sunday 7:30PM – 9:30PM	BLOC 120
------------------------	----------

Monday 7:30PM – 9:30PM BLOC 155

Wednesday 8:00PM – 10:00PM BLOC 120

HW#3 is due Wednesday, September 17, 11:55 PM.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Chapter 8. **Techniques of integration** Section 8.1 **Integration by parts**

Integration by parts is a rule that transforms the integral of products of functions into other, hopefully simpler, integral. Assume that f and g are continuous functions.

The formula for integration by parts for indefinite integrals is $\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$

The formula for integration by parts for definite integrals is

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the **typical strategy** is to carefully separate it into a product of two functions f(x)g(x) such that the integral produced by the integration by parts formula is easier to evaluate than the original one.

Example 1. Evaluate the integral.

(a) $\int \ln x \, dx$ (b) $\int \arcsin x \, dx$ (c) $\int x \cos 3x \, dx$ (d) $\int_{0}^{1} t^2 e^t dt$ (e) $\int \cos(\ln x) \, dx$ (f) $\int e^x \cos x \, dx$

Example 2. (a) Prove the reduction formula

$$\int \cos^{n} x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx.$$
(b) evaluate integral $\int \cos^{4} x \, dx$

Example 3. Use the methods of cylindrical shells to find the volume generated by rotating the region bounded by $y = e^{-x}$, y = 0, x = -1, x = 0 about x = 1.

Section 8.2 Trigonometric integrals

How to evaluate $\int \sin^m x \cos^n x \, dx$

(a) if n = 2k + 1 (*n* is odd), save one cosine factor and use $\cos^2 x = 1 - \sin^2 x$ to express the remaining factors in terms of sine:

$$\int \sin^m x \cos^{2k+1} x \, dx = \int \sin^m x (\cos^2 x)^k \cos x \, dx =$$
$$\int \sin^m x (1 - \sin^2 x)^k \cos x \, dx$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then substitute $u = \sin x$

(b) if m = 2s + 1 (*m* is odd), save one sine factor and use $\sin^2 x = 1 - \cos^2 x$ to express the remaining factors in terms of cosine:

$$\int \sin^{2s+1} x \cos^n x \, dx = \int (\sin^2 x)^s \cos^n x \sin x \, dx =$$

$$\int (1 - \cos^2 x)^s \cos^n x \sin x \, dx$$

Then substitute $u = \cos x$

(c) if both m and n are even, use the half-angle identities

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
 $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$

It is sometimes useful to use the identity

$$\sin x \cos x = \frac{1}{2} \sin 2x$$

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへぐ

Example 4. Evaluate each of the following integrals

(a)
$$\int \cos^3 x \, dx$$
 (b) $\int \sin^5 x \, dx$ (c) $\int_{0}^{\pi/2} \sin^2 3x \, dx$
(d) $\int \sin^2 x \cos^3 x \, dx$ (e) $\int_{0}^{\pi/4} \sin^4 x \cos^3 x \, dx$
(f) $\int \sin^3 \frac{x}{2} \cos^5 \frac{x}{2} \, dx$ (g) $\int_{0}^{\pi/2} \sin^2 x \cos^2 x \, dx$ (h) $\int \cos^4 x \, dx$

<□ > < @ > < E > < E > E - のQ @