Math 152, Fall 2008

Lecture 8.

09/18/2008

HW\#4 is due Wednesday, September 24, 11:55 PM.

Chapter 8. Techniques of integration Section 8.3 Trigonometric substitution

Assume that g is one-to-one function (g^{-1} exists). Then $\int f(x) d x=\int f(g(t)) g^{\prime}(t) d t$. This kind of substitution is called inverse substitution.

Table of trigonometric substitutions

Expression	Substitution	Identity
$\sqrt{a^{2}-x^{2}}$	$x=a \sin t,-\pi / 2 \leq t \leq \pi / 2$	$1-\sin ^{2} t=\cos ^{2} t$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan t,-\pi / 2<t<\pi / 2$	$1+\tan ^{2} t=\sec ^{2} t$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec t, 0 \leq t \leq \pi / 2$ or $\pi \leq t \leq 3 \pi / 2$	$\sec ^{2} t-1=\tan ^{2} t$

Example 1.
(a) $\int x \sqrt{4-x^{2}} d x$
(b) $\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x$
(c) $\int \frac{d x}{x^{2} \sqrt{16 x^{2}-9}}$
(d) $\int \frac{d x}{\sqrt{x^{2}+4 x+8}}$

Section 8.4 Integration of rational functions by partial fractions

In this section we show how to integrate any rational function $f(x)=\frac{P(x)}{Q(x)}$, where $P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}$, $Q(x)=b_{0} x^{m}+b_{1} x^{m-1}+\ldots+b_{m}$ by expressing it as a sum of partial fractions, that we know how to integrate.

STEP 1. If f is improper $(m \geq n)$, then we must divide Q into P by long divisions until a remainder $R(x)$ is obtained. The division statement is

$$
f(x)=\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}
$$

STEP 2. Factor the denominator $Q(x)$ as far as possible. It can be shown that any polynomial Q can be factored as a product of linear factors of the form $a x+b$ and irreducible quadratic factors (of the form $a x^{2}+b x+c$, where $b^{2}-4 a c<0$).

STEP 3. Express the proper rational function $\frac{R(x)}{Q(x)}$ as a sum of partial fractions of the form

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{j}}
$$

Four cases occur.
CASE I. $Q(x)$ is a product of distinct linear factors.

$$
Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \ldots\left(a_{m} x+b_{m}\right)
$$

where no factor is repeated. Then there exist constants A_{1}, A_{2}, \ldots, A_{m} such that

$$
f(x)=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\ldots+\frac{A_{m}}{a_{m} x+b_{m}}
$$

Once the constants $A_{1}, A_{2}, \ldots, A_{m}$ are determined, the evaluation of $\frac{R(x)}{Q(x)}$ becomes a routine problem. The next examples will illustrate one method for finding these constants.

Example 2. Evaluate $\int_{2}^{4} \frac{4 x-1}{x^{2}+x-2} d x$
CASE II. $Q(x)$ is a product of linear factors, some of which are repeated.
Suppose the first linear factor $a_{1} x+b_{1}$ is repeated r times; that is, $\left(a_{1} x+b_{1}\right)^{r}$ occurs in factorization of $Q(x)$. Then instead of the single term $A_{1} /\left(a_{1} x+b_{1}\right)$, we would use

$$
\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{\left(a_{1} x+b_{1}\right)^{2}}+\ldots+\frac{A_{r}}{\left(a_{1} x+b_{1}\right)^{r}}
$$

Example 3. Evaluate $\int \frac{5 x^{2}+6 x+9}{(x+1)^{2}(x-3)^{2}} d x$

