Math 152, Fall 2008

Lecture 12.

10/02/2008

The due date for HW\#5 is Saturday, October 4, 11:55 PM.

Chapter 8. Techniques of integration Section 8.9 Improper integrals

In this section we extend the conception of a definite integral to the case where the interval is infinite and also to the case where integrand is unbounded.

Definition of an improper integral of type 1 (infinite intervals)
(a) If $\int_{a}^{t} f(x) d x$ exists for every number $t \geq a$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

provided this limit exists (as a finite number)
(b) If $\int_{t}^{b} f(x) d x$ exists for every number $t \leq b$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

provided this limit exists (as a finite number)
The improper integrals in (a) and (b) are called convergent if the limit exist and divergent if the limit does not exist.
(c) If both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

where a is any real number

Example 1. For what values of p is the integral

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x
$$

convergent?
Example 2. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
(a) $\int_{2}^{\infty} \frac{d x}{\sqrt{x+3}}$
(b) $\int_{-\infty}^{-1} \frac{d x}{\sqrt[3]{x-1}}$
(c) $\int_{-\infty}^{\infty}\left(2 x^{2}+x-1\right) d x$
(d) $\int_{-\infty}^{\infty} x^{2} e^{-x^{3}} d x$
(e) $\int_{0}^{\infty} \frac{x}{(x+2)(x+3)} d x$

Definition of an improper integral of type 2 (discontinuous integrands)
(a) If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if this limit exists (as a finite number)
(b) If f is continuous on $(a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if this limit exists (as a finite number)
The improper integrals in (a) and (b) are called convergent if the limit exist and divergent if the limit does not exist.
(c) If f has discontinuity at $c(a<c<b)$, and both $\int_{a}^{c} f(x) d x$ and b
$\int_{c}^{b} f(x) d x$ are convergent, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Example 3. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
(a) $\int_{0}^{3} \frac{1}{x \sqrt{x}} d x$
(b) $\int_{\pi / 4}^{\pi / 2} \sec ^{2} x d x$
(c) $\int_{0}^{1} x \ln x d x$

Comparison theorem Suppose that f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a$.
(a) If $\int_{a}^{\infty} f(x) d x$ is convergent $\int_{a}^{\infty} g(x) d x$ is convergent.
(a) If $\int_{a}^{\infty} f(x) d x$ is divergent $\int_{a}^{\infty} g(x) d x$ is divergent.

Example 4. Use the Comparison Theorem to determine whether $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ is convergent or divergent.

