Math 152, Fall 2008

Lecture 17.

10/21/2008

HW\#8 is due Wednesday, October 22, 11:55 PM.

Chapter 10. Infinite sequences and series Section 10.1 Sequences

A sequence is a list of numbers written in a definite order:

$$
a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

The number a_{1} is called the first term, a_{2} is the second term, a_{n} is the nth term. We will deal with infinite sequences and so each term a_{n} will have a successor a_{n+1}.

NOTATION: The sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ is also denoted by

$$
\left\{a_{n}\right\} \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}
$$

Each sequence can be defined as a function whose domain is the set of positive integers $\left(a_{n}=f(n)\right)$.

Some sequences can be defined by giving the formula for the nth term

$$
\left\{n 2^{-n}\right\}, \quad a_{n}=\frac{n+1}{n!}
$$

another by writing out the terms of sequences

$$
\left\{\frac{3}{16}, \frac{4}{25}, \frac{5}{36}, \frac{6}{49}, \ldots\right\}
$$

n does not have to start at 1 .

Definition A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

if we can make the terms a_{n} as close to L as we like by taking n sufficiently large.
If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges or is convergent. Otherwise, we say the sequence diverges or is divergent

Limit Laws If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a constant, then

1. $\lim _{n \rightarrow \infty}\left[a_{n}+b_{n}\right]=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$
2. $\lim _{n \rightarrow \infty}\left[a_{n}-b_{n}\right]=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$
3. $\lim _{x \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$
4. $\lim _{n \rightarrow \infty}\left[a_{n} b_{n}\right]=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$
5. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$ if $\lim _{n \rightarrow \infty} b_{n} \neq 0$
6. $\lim _{n \rightarrow \infty} c=c$

The Squeeze Theorem If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

Theorem If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Example 1. Find the limit
(a) $\lim _{n \rightarrow \infty} \frac{n-2}{3 n+1}$
(b) $\lim _{n \rightarrow \infty} \frac{\ln \left(n^{2}\right)}{n}$
(c) $\lim _{n \rightarrow \infty}(\sqrt{n+2}-\sqrt{n})$
(d) $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n!}$
(e) $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}$

Example 2. For what values of r is the sequence $\left\{r^{n}\right\}$ convergent?

Definition A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geq 1$. It is called decreasing if $a_{n}>a_{n+1}$ for all $n \geq 1$. A sequence is monotonic if it is either increasing or decreasing.

Example 3. Determine whether the sequence is increasing, decreasing, or not monotonic.
(a) $a_{n}=\frac{1}{3 n+5}$
(b) $a_{n}=3+\frac{(-1)^{n}}{n}$
(c) $a_{n}=\frac{n-2}{n+2}$

Definition A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that

$$
a_{n} \leq M \quad \text { for all } n \geq 1
$$

It is bounded below if there is a number m such that

$$
a_{n} \geq m \quad \text { for all } n \geq 1
$$

If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded sequence

Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

Example 4. Show that the sequence defined by

$$
a_{1}=1 \quad a_{n+1}=3-1 / a_{n}
$$

is increasing and $a_{n}<3$ for all n.

