The Test 1 will be held on Thursday, Sept. 25, at 7:30-9:30 PM in HELD 105.
It will cover sections $6.4,6.5,7.1-7.5,8.1-8.4$.
Calculators are not allowed on the test.

Chapter 7. Applications of integration
 Section 7.1 Areas between curves

The area of the region S that lies between two curves $y=f(x)$ and $y=g(x)$ and between the vertical lines $x=a$ and $x=b$, is $A=\int_{a}^{b}|f(x)-g(x)| d x$

Fig. $1 \quad S=\{(x, y): a \leq x \leq b, g(x) \leq y \leq f(x)\}$
If a region is bounded by curves with equations $x=f(y), x=g(y), y=c$ and $y=d$, where f and g are continuous functions and $f(y) \geq g(y)$ for all y in $[c, d]$, then its area is $A=\int_{c}^{d}[f(y)-g(y)] d y$

Fig. $2 \quad S=\{(x, y): g(y) \leq x \leq f(y), c \leq y \leq d\}$
Example 1. Find the area of the region bounded by $y=\sin x, y=-\cos x, x=0, x=\pi$.

Section 7.2 Volume

Section 7.3 Volumes by cylindrical shells
Definition of volume Let S be a solid that lies between the planes P_{a} and P_{b}. If the cross-sectional area of S in the plane P_{x} is $A(x)$, where A is an integrable function, then the volume of S is $V=\int_{a}^{b} A(x) d x$

Example 2. Let S is a solid with the base $\left\{(x, y): x^{2} \leq y \leq 1\right\}$, and whose cross-sections perpendicular to the y-axis are equilateral triangles. Compute the volume of S.

Let S be the solid obtained by revolving the plane region \mathcal{R} bounded by $y=f(x), y=0$, $x=a$, and $x=b$ about the x-axis, then its volume $V=\pi \int_{a}^{b}[f(x)]^{2} d x$ (disk method)

The volume of the solid generated by rotating the region bounded by $x=g(y), x=0$, $y=c$, and $y=d$ about the x-axis, is $V=2 \pi \int_{c}^{d} y g(y) d y$. (cylindrical shells method)

The region bounded by the curves $x=g(y), x=0, y=c$, and $y=d$ is rotated about the y-axis, then the corresponding volume of revolution is $V=\pi \int_{c}^{d}[g(y)]^{2} d y$ (disk method)

Let S be the solid obtained by rotating about the y-axis the region bounded by $y=f(x) \geq 0$, $y=0, x=a$, and $x=b$, where $b>a \geq 0$. Then its volume is $V=2 \pi \int_{a}^{b} x f(x) d x$ (cylindrical shells method)

Let S be the solid generated when the region bounded by the curves $y=f(x), y=g(x)$, $x=a$, and $x=b$ (where $f(x) \geq g(x)$ for all x in $[a, b]$) is rotated about the x-axis. Then the volume of S is $V=\pi \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x$

The volume of the solid generated by rotating about the y-axis the region between the curves $y=f(x)$ and $y=g(x)$ from a to $b[f(x) \geq g(x)$ and $0 \leq a<b]$ is $V=2 \pi \int_{a}^{b} x[f(x)-g(x)] d x$.

Example 3. (a) Let \mathcal{R}_{a} be the region bounded by $y=x^{2}, y=4, x=0, x=2$. Use the method of disks to find the volume of the solid generated by rotating \mathcal{R}_{a} about y-axis.
(b) Let \mathcal{R}_{b} be the region bounded by $y=x^{2}, y=0, x=1, x=2$. Use the method of cylindrical shells to find the volume of the solid generated by rotating \mathcal{R}_{b} about the line $x=4$.

Section 7.4 Work

The work done in moving the object from a to b is $W=\int_{a}^{b} f(x) d x$
Example 4. Suppose that 2 J of work are needed to stretch a spring from its natural length of 30 cm to a length of 42 cm . How much work is needed to stretch it from 35 cm to 40 cm ?

Example 5. A tank full of water has a shape of paraboloid of revolution (its shape is obtained by rotating a parabola about a vertical axis). If its height is 4 m and the radius of top is 4 m , find the work required to pump the water out of tank.

Section 7.5 Average value of a function

The average value of f on the interval $[a, b]$ is $f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
Example 6. Find the average value of the function $f(x)=x^{3}$ on the interval $[2,4]$.
Example 7. Suppose that f is continuous function defined on $[0, \infty)$, and the average value of f over the interval $[0, t]$ is $t-3$ for every $t>0$. Find f.

Chapter 8. Techniques of integration

Strategy for integration

1. Simplify the intergand if possible

2. Look for an obvious substitution Try to find some function $u=g(x)$ un the integrand whose differential $d u=g^{\prime}(x) d x$ also occurs, apart from a constant factor.

$$
\begin{aligned}
& \int f(g(x)) g^{\prime}(x) d x=\int f(u) d u \\
& \int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
\end{aligned}
$$

Example 8. Find $\int_{0}^{1} \frac{x^{2}}{(2 x+1)^{10}} d x$.
3. Classify the integrand according to its form If steps 1 and 2 have not led to the solution, then we take a look at the form of the integrand $f(x)$.
(a) Trigonometric functions.

How to evaluate $\int \sin ^{m} x \cos ^{n} x d x$
(a) if the power of cosine is odd, save one cosine factor and use $\cos ^{2} x=1-\sin ^{2} x$ to express the remaining factors in terms of sine. Then substitute $u=\sin x$
(b) if the power of sine is odd, save one sine factor and use $\sin ^{2} x=1-\cos ^{2} x$ to express the remaining factors in terms of cosine. Then substitute $u=\cos x$
(c) if both m and n are even, use the half-angle identities $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$,

$$
\cos ^{2} x=\frac{1}{2}(1+\cos 2 x), \sin x \cos x=\frac{1}{2} \sin 2 x \text {. }
$$

How to evaluate $\int \tan ^{m} x \sec ^{n} x d x$
(a) if the power of secant is even, save a factor of $\sec ^{2} x$ and use $\sec ^{2} x=1+\tan ^{2} x$ to express the remaining factors in terms of $\tan x$. Then substitute $u=\tan x$.
(b) if the power of tangent is odd, save a factor of $\tan x \sec x$ and use $\tan ^{2} x=\sec ^{2} x-1$ to express the remaining factors in terms of $\sec x$. Then substitute $u=\sec x$.

To evaluate the integrals $\int \sin m x \cos n x d x, \int \sin m x \sin n x d x, \int \cos m x \cos n x d x$, use the identities:

$\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha-\beta)+\sin (\alpha+\beta)]$,
$\sin \alpha \sin \beta=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]$
$\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]$

Example 9. Evaluate
(a) $\int \sin ^{4} x \cos ^{2} x d x$

SOLUTION. $\int \sin ^{4} x \cos ^{2} x d x=\frac{1}{4} \int \sin ^{2} x \sin ^{2} 2 x d x=\frac{1}{4} \int \frac{1-\cos 2 x}{2} \sin ^{2} 2 x d x=$
$\frac{1}{8} \int\left(\sin ^{2} 2 x-\cos 2 x \sin ^{2} 2 x\right) d x=\frac{1}{8} \int \sin ^{2} 2 x d x-\frac{1}{8} \int \cos 2 x \sin ^{2} 2 x d x=$
Let's make a substitution in the second integral $\sin 2 x=u$, then $d u=2 \cos 2 x d x$
$\frac{1}{8} \int \frac{1-\cos 4 x}{2} d x-\frac{1}{16} \int u^{2} d u=\frac{1}{16}\left(x-\frac{1}{4} \sin 4 x\right)-\frac{1}{16} \frac{u^{3}}{3}+C=$
$\frac{1}{16} x-\frac{1}{64} \sin 4 x-\frac{1}{48} \sin ^{3} 2 x+C$
(b) $\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{3} x d x$

SOLUTION. $\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{3} x d x=\int_{0}^{\pi / 2} \sin ^{2} x \cos ^{2} x \cos x d x=\int_{0}^{\pi / 2} \sin ^{2} x\left(1-\sin ^{2} x\right) \cos x d x=$

$$
\left|\begin{array}{cc}
u=\sin x & x=0 \rightarrow u=0 \\
d u=\cos x d x & x=\pi / 2 \rightarrow u=1
\end{array}\right|=\int_{0}^{1} u^{2}\left(1-u^{2}\right) d u=\int_{0}^{1}\left(u^{2}-u^{4}\right) d u=\left.\left(\frac{u^{3}}{3}-\frac{u^{5}}{5}\right)\right|_{0} ^{1}=\frac{2}{15}
$$

(c) $\int \tan ^{3} x \sec ^{3} x d x$

SOLUTION. $\int \tan ^{3} x \sec ^{3} x d x=\int \tan ^{2} x \sec ^{2} x(\tan x \sec x) d x=\int\left(\sec ^{2} x+1\right) \sec ^{2} x(\tan x \sec x) d x=$ $\left|\begin{array}{c}u=\sec x \\ d u=\sec x \tan x d x\end{array}\right|=\int\left(u^{2}+1\right) u^{2} d u=\int\left(u^{4}+u^{2}\right) d u=\frac{u^{5}}{5}+\frac{u^{3}}{3}+C=\frac{\sec ^{5} x}{5}+\frac{\sec ^{3} x}{3}+C$
(d) $\int \cos 2 x \sin x d x$

SOLUTION. $\int \cos 2 x \sin x d x=\frac{1}{2} \int(\sin x+\sin 3 x) d x=\frac{1}{2}\left(-\cos x-\frac{1}{3} \cos 3 x\right)+C$
(b) Rational functions. If f is a rational function, then $f(x)=\frac{P(x)}{Q(x)}$, where $P(x)=$ $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}, Q(x)=b_{0} x^{m}+b_{1} x^{m-1}+\ldots+b_{m}$ by expressing it as a sum of partial fractions, that we know how to integrate.

STEP 1. If f is improper $(m \geq n)$, then we must divide Q into P by long divisions until a remainder $R(x)$ is obtained. The division statement is

$$
f(x)=\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}
$$

STEP 2. Factor the denominator $Q(x)$ as far as possible. It can be shown that any polynomial Q can be factored as a product of linear factors of the form $a x+b$ and irreducible quadratic factors (of the form $a x^{2}+b x+c$, where $b^{2}-4 a c<0$).

STEP 3. Express the proper rational function $\frac{R(x)}{Q(x)}$ as a sum of partial fractions of the form

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{j}}
$$

Four cases occur.
CASE I. $Q(x)$ is a product of distinct linear factors.

$$
Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \ldots\left(a_{m} x+b_{m}\right)
$$

where no factor is repeated. Then there exist constants $A_{1}, A_{2}, \ldots, A_{m}$ such that

$$
f(x)=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\ldots+\frac{A_{m}}{a_{m} x+b_{m}}
$$

CASE II. $Q(x)$ is a product of linear factors, some of which are repeated.

Suppose the first linear factor $a_{1} x+b_{1}$ is repeated r times; that is, $\left(a_{1} x+b_{1}\right)^{r}$ occurs in factorization of $Q(x)$. Then instead of the single term $A_{1} /\left(a_{1} x+b_{1}\right)$, we would use

$$
\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{\left(a_{1} x+b_{1}\right)^{2}}+\ldots+\frac{A_{r}}{\left(a_{1} x+b_{1}\right)^{r}}
$$

CASE III $Q(x)$ contains irreducible quadratic factors none of which is repeated. If $Q(x)$ has the factor $a x^{2}+b x+c$, where $b^{2}-4 a c<0$, then the corresponding fraction is

$$
\frac{A x+B}{a x^{2}+b x+c}
$$

where A and B are constants to be determined.
The term $\frac{A x+B}{a x^{2}+b x+c}$ can be integrating by completing the square in the denominator.
CASE IV $Q(x)$ contains a repeated irreducible factor.
If $Q(x)$ has the factor $\left(a x^{2}+b x+c\right)^{r}$, where $b^{2}-4 a c<0$, then instead of the single partial fraction $\frac{A x+B}{a x^{2}+b x+c}$, the sum

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}}
$$

occurs in the partial fraction decomposition of $R(x) / Q(x)$. Each of these terms can be integrated by completing the square and making the tangent substitution.

Example 10. Find $\int \frac{x^{3}+1}{x^{3}-x^{2}} d x$
SOLUTION. $\frac{x^{3}+1}{x^{3}-x^{2}}=1+\frac{1+x^{2}}{x^{3}-x^{2}}$
$\frac{1+x^{2}}{x^{3}-x^{2}}=\frac{1+x^{2}}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}$
$\left.\frac{1+x^{2}}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} \right\rvert\, \times x^{2}(x-1)$
$1+x^{2}=A x(x-1)+B(x-1)+C x^{2}$
$x=0: \quad 1=B$
$x=1: \quad 2=C$
$x=-1: \quad 2=(-2)(-1) A-2 B+C$
Thus, $A=1, B=1, C=2$, and
$\frac{1+x^{2}}{x^{2}(x-1)}=\frac{1}{x}+\frac{1}{x^{2}}+\frac{2}{x-1}$
Then

$$
\int \frac{x^{3}+1}{x^{3}-x^{2}} d x=\int\left(1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{2}{x-1}\right) d x=x+\ln |x|-\frac{1}{x}+2 \ln |x-1|+C
$$

(c) Integration by parts. If $f(x)$ is a product of a power of x (or a polynomial) and transcendental function (such as a trigonometric, exponential, logarithmic function), then we try integration by parts.

$$
\begin{aligned}
& \int f^{\prime}(x) g(x) d x=f(x) g(x)-\int f(x) g^{\prime}(x) d x \\
& \int_{a}^{b} f^{\prime}(x) g(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f(x) g^{\prime}(x) d x
\end{aligned}
$$

Example 11. Evaluate $\int_{0}^{2} e^{\sqrt{x}} d x$

$$
\begin{aligned}
& \text { SOLUTION. } \int_{0}^{2} e^{\sqrt{x}} d x=\left|\begin{array}{cc}
u=\sqrt{x} \rightarrow x=u^{2} & x=0 \rightarrow u=0 \\
d x=2 u d u & x=2 \rightarrow u=\sqrt{2}
\end{array}\right|=2 \int_{0}^{\sqrt{2}} u e^{u} d u= \\
& \left|\begin{array}{cc}
f^{\prime}(u)=e^{u} & f(u)=e^{u} \\
g(u)=u & g^{\prime}(u)=1
\end{array}\right|=2\left(\left.u e^{u}\right|_{0} ^{\sqrt{2}}-\int_{0}^{\sqrt{2}} e^{u} d u\right)=2\left(\sqrt{2} e^{\sqrt{2}}-\left.e^{u}\right|_{0} ^{\sqrt{2}}\right)=2\left(\sqrt{2} e^{\sqrt{2}}-e^{\sqrt{2}}+1\right)
\end{aligned}
$$

(d) Radicals. If $\sqrt{ \pm x^{2} \pm a^{2}}$ occurs, we use a trigonometric substitution according to the following table

Table of trigonometric substitutions

Expression	Substitution	Identity
$\sqrt{a^{2}-x^{2}}$	$x=a \sin t,-\pi / 2 \leq t \leq \pi / 2$	$1-\sin ^{2} t=\cos ^{2} t$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan t,-\pi / 2<t<\pi / 2$	$1+\tan ^{2} t=\sec ^{2} t$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec t, 0 \leq t \leq \pi / 2$ or $\pi \leq t \leq 3 \pi / 2$	$\sec ^{2} t-1=\tan ^{2} t$

Example 12. Find $\int \sqrt{1+4 x-x^{2}} d x$.
SOLUTION. Let's complete the square under the root sign:

$$
\begin{aligned}
& 1+4 x-x^{2}=-\left(x^{2}-4 x-1\right)=-\left(x^{2}-4 x+4-4-1\right)=-\left((x-2)^{2}-5\right)=5-(x-2)^{2} \\
& \int \sqrt{1+4 x-x^{2}} d x=\int \sqrt{5-(x-2)^{2}} d x=\left|\begin{array}{c}
x-2=u \\
d x=d u
\end{array}\right|=\int \sqrt{5-u^{2}} d u=\left|\begin{array}{c}
u=\sqrt{5} \sin t \\
d u=\sqrt{5} \cos t d t \\
\sqrt{5-u^{2}}=\sqrt{5} \cos t
\end{array}\right|= \\
& \int \sqrt{5} \cos t \sqrt{5} \cos t d t=5 \int \cos ^{2} t d t=5 \int \frac{1+\cos 2 t}{2} d t=\frac{5}{2}\left(t+\frac{1}{2} \sin 2 t\right)+C
\end{aligned}
$$

Since $\sin t=\frac{u}{\sqrt{5}}$, then $\cos t=\sqrt{1-\sin ^{2} t}=\frac{1}{\sqrt{5}} \sqrt{5-u^{2}}$ and
$\sin 2 t=2 \sin t \cos t=2 \frac{u}{\sqrt{5}} \frac{1}{\sqrt{5}} \sqrt{5-u^{2}}=\frac{2 u}{5} \sqrt{5-u^{2}}$

Thus,

$$
\begin{aligned}
& \frac{5}{2}\left(t+\frac{1}{2} \sin 2 t\right)+C=\frac{5}{2}\left(\arcsin \frac{u}{\sqrt{5}}+\frac{2}{5} u \sqrt{5-u^{2}}\right)+C= \\
& \frac{5}{2}\left(\arcsin \frac{x-2}{\sqrt{5}}+\frac{2}{5}(x-2) \sqrt{5-(x-2)^{2}}\right)+C
\end{aligned}
$$

4. Try again If the first three steps have not produced the answer, remember that there are basically two methods of integration: substitution and parts. Sometimes two or three methods are required to evaluate an integral.
