
Math 152 Fall 2008 Review Before Test 1

The Test 1 will be held on Thursday, Sept. 25, at 7:30-9:30 PM in HELD 105.

It will cover sections 6.4, 6.5, 7.1 – 7.5, 8.1 – 8.4.

Calculators are not allowed on the test.

Chapter 7. Applications of integration

Section 7.1 Areas between curves

The area of the region S that lies between two curves y = f(x) and y = g(x) and between

the vertical lines x = a and x = b, is A =
b
∫

a

|f(x) − g(x)|dx

0 x

y

a b

y = f(x)

y = g(x)

S

Fig.1 S = {(x, y) : a ≤ x ≤ b, g(x) ≤ y ≤ f(x)}

If a region is bounded by curves with equations x = f(y), x = g(y), y = c and y = d,
where f and g are continuous functions and f(y) ≥ g(y) for all y in [c, d], then its area is

A =
d
∫

c

[f(y) − g(y)]dy

0 x

y

c

d

S x = f(y)

x = g(y)

Fig.2 S = {(x, y) : g(y) ≤ x ≤ f(y), c ≤ y ≤ d}

Example 1. Find the area of the region bounded by y = sin x, y = − cos x, x = 0, x = π.



Section 7.2 Volume

Section 7.3 Volumes by cylindrical shells

Definition of volume Let S be a solid that lies between the planes Pa and Pb. If the
cross-sectional area of S in the plane Px is A(x), where A is an integrable function, then the

volume of S is V =
b
∫

a

A(x)dx

Example 2. Let S is a solid with the base {(x, y) : x2 ≤ y ≤ 1}, and whose cross-sections
perpendicular to the y-axis are equilateral triangles. Compute the volume of S.

Let S be the solid obtained by revolving the plane region R bounded by y = f(x), y = 0,

x = a, and x = b about the x-axis, then its volume V = π
b
∫

a

[f(x)]2dx (disk method)

The volume of the solid generated by rotating the region bounded by x = g(y), x = 0,

y = c, and y = d about the x-axis, is V = 2π
d
∫

c

yg(y)dy . (cylindrical shells method)

The region bounded by the curves x = g(y), x = 0, y = c, and y = d is rotated about the

y-axis, then the corresponding volume of revolution is V = π
d
∫

c

[g(y)]2dy (disk method)

Let S be the solid obtained by rotating about the y-axis the region bounded by y = f(x) ≥ 0,

y = 0, x = a, and x = b, where b > a ≥ 0. Then its volume is V = 2π
b
∫

a

xf(x)dx (cylindrical

shells method)

Let S be the solid generated when the region bounded by the curves y = f(x), y = g(x),
x = a, and x = b (where f(x) ≥ g(x) for all x in [a, b] ) is rotated about the x-axis. Then the

volume of S is V = π
b
∫

a

{[f(x)]2 − [g(x)]2}dx

The volume of the solid generated by rotating about the y-axis the region between the curves

y = f(x) and y = g(x) from a to b [f(x) ≥ g(x) and 0 ≤ a < b] is V = 2π
b
∫

a

x[f(x) − g(x)]dx .

Example 3. (a) Let Ra be the region bounded by y = x2, y = 4, x = 0, x = 2. Use the
method of disks to find the volume of the solid generated by rotating Ra about y-axis.

(b) Let Rb be the region bounded by y = x2, y = 0, x = 1, x = 2. Use the method of
cylindrical shells to find the volume of the solid generated by rotating Rb about the line x = 4.



Section 7.4 Work

The work done in moving the object from a to b is W =
b
∫

a

f(x)dx

Example 4. Suppose that 2 J of work are needed to stretch a spring from its natural
length of 30 cm to a length of 42 cm. How much work is needed to stretch it from 35 cm to 40
cm?

Example 5. A tank full of water has a shape of paraboloid of revolution (its shape is
obtained by rotating a parabola about a vertical axis). If its height is 4 m and the radius of
top is 4 m, find the work required to pump the water out of tank.

Section 7.5 Average value of a function

The average value of f on the interval [a, b] is fave =
1

b − a

b
∫

a

f(x)dx

Example 6. Find the average value of the function f(x) = x3 on the interval [2, 4].

Example 7. Suppose that f is continuous function defined on [0,∞), and the average
value of f over the interval [0, t] is t − 3 for every t > 0. Find f .

Chapter 8. Techniques of integration

Strategy for integration

1. Simplify the intergand if possible

2. Look for an obvious substitution Try to find some function u = g(x) un the
integrand whose differential du = g′(x)dx also occurs, apart from a constant factor.

∫

f(g(x))g′(x)dx =

∫

f(u)du

b
∫

a

f(g(x))g′(x)dx =

g(b)
∫

g(a)

f(u)du

Example 8. Find

1
∫

0

x2

(2x + 1)10
dx.

3. Classify the integrand according to its form If steps 1 and 2 have not led to the
solution, then we take a look at the form of the integrand f(x).

(a) Trigonometric functions.



How to evaluate
∫

sinm x cosn x dx

(a) if the power of cosine is odd, save one cosine factor and use cos2 x = 1 − sin2 x to
express the remaining factors in terms of sine. Then substitute u = sin x

(b) if the power of sine is odd, save one sine factor and use sin2 x = 1 − cos2 x to express
the remaining factors in terms of cosine. Then substitute u = cos x

(c) if both m and n are even, use the half-angle identities sin2 x = 1
2
(1 − cos 2x) ,

cos2 x = 1
2
(1 + cos 2x) , sin x cos x = 1

2
sin 2x .

How to evaluate
∫

tanm x secn x dx

(a) if the power of secant is even, save a factor of sec2 x and use sec2 x = 1 + tan2 x to
express the remaining factors in terms of tan x. Then substitute u = tan x.

(b) if the power of tangent is odd, save a factor of tanx sec x and use tan2 x = sec2 x − 1
to express the remaining factors in terms of sec x. Then substitute u = sec x.

To evaluate the integrals
∫

sin mx cos nx dx,
∫

sin mx sin nx dx,
∫

cos mx cos nx dx, use
the identities:

sin α cos β = 1
2
[sin(α − β) + sin(α + β)] ,

sin α sin β = 1
2
[cos(α − β) − cos(α + β)] ,

cos α cos β = 1
2
[cos(α − β) + cos(α + β)]

Example 9. Evaluate

(a)
∫

sin4 x cos2 x dx

SOLUTION.

∫

sin4 x cos2 x dx =
1

4

∫

sin2 x sin2 2x dx =
1

4

∫

1 − cos 2x

2
sin2 2x dx =

1

8

∫

(sin2 2x − cos 2x sin2 2x) dx =
1

8

∫

sin2 2x dx − 1

8

∫

cos 2x sin2 2x dx =

Let’s make a substitution in the second integral sin 2x = u, then du = 2 cos 2xdx

1

8

∫

1 − cos 4x

2
dx − 1

16

∫

u2du =
1

16

(

x − 1

4
sin 4x

)

− 1

16

u3

3
+ C =

1

16
x − 1

64
sin 4x − 1

48
sin3 2x + C

(b)
π/2
∫

0

sin2 x cos3 x dx

SOLUTION.
π/2
∫

0

sin2 x cos3 x dx =
π/2
∫

0

sin2 x cos2 x cos x dx =
π/2
∫

0

sin2 x(1− sin2 x) cos x dx =



∣

∣

∣

∣

u = sin x x = 0 → u = 0
du = cos xdx x = π/2 → u = 1

∣

∣

∣

∣

=
1
∫

0

u2(1 − u2)du =
1
∫

0

(u2 − u4)du =

(

u3

3
− u5

5

)
∣

∣

∣

∣

1

0

=
2

15

(c)
∫

tan3 x sec3 x dx

SOLUTION.
∫

tan3 x sec3 x dx =
∫

tan2 x sec2 x(tan x sec x) dx =
∫

(sec2 x+1) sec2 x(tan x sec x) dx =
∣

∣

∣

∣

u = sec x
du = sec x tan x dx

∣

∣

∣

∣

=
∫

(u2+1)u2du =
∫

(u4+u2)du =
u5

5
+

u3

3
+C =

sec5 x

5
+

sec3 x

3
+C

(d)
∫

cos 2x sin x dx

SOLUTION.
∫

cos 2x sin x dx =
1

2

∫

(sin x + sin 3x)dx =
1

2
(− cos x − 1

3
cos 3x) + C

(b) Rational functions. If f is a rational function, then f(x) =
P (x)

Q(x)
, where P (x) =

a0x
n + a1x

n−1 + ... + an−1x + an, Q(x) = b0x
m + b1x

m−1 + ... + bm by expressing it as a sum of
partial fractions, that we know how to integrate.

STEP 1. If f is improper (m ≥ n), then we must divide Q into P by long divisions until a
remainder R(x) is obtained. The division statement is

f(x) =
P (x)

Q(x)
= S(x) +

R(x)

Q(x)

STEP 2. Factor the denominator Q(x) as far as possible. It can be shown that any
polynomial Q can be factored as a product of linear factors of the form ax + b and irreducible

quadratic factors (of the form ax2 + bx + c, where b2 − 4ac < 0).

STEP 3. Express the proper rational function
R(x)

Q(x)
as a sum of partial fractions of the

form
A

(ax + b)i
or

Ax + B

(ax2 + bx + c)j

Four cases occur.

CASE I. Q(x) is a product of distinct linear factors.

Q(x) = (a1x + b1)(a2x + b2)...(amx + bm)

where no factor is repeated. Then there exist constants A1, A2,..., Am such that

f(x) =
A1

a1x + b1

+
A2

a2x + b2

+ ... +
Am

amx + bm

CASE II. Q(x) is a product of linear factors, some of which are repeated.



Suppose the first linear factor a1x + b1 is repeated r times; that is, (a1x + b1)
r occurs in

factorization of Q(x). Then instead of the single term A1/(a1x + b1), we would use

A1

a1x + b1
+

A2

(a1x + b1)2
+ ... +

Ar

(a1x + b1)r

CASE III Q(x) contains irreducible quadratic factors none of which is repeated.

If Q(x) has the factor ax2 + bx + c, where b2 − 4ac < 0, then the corresponding fraction is

Ax + B

ax2 + bx + c

where A and B are constants to be determined.

The term
Ax + B

ax2 + bx + c
can be integrating by completing the square in the denominator.

CASE IV Q(x) contains a repeated irreducible factor.

If Q(x) has the factor (ax2 + bx + c)r, where b2 − 4ac < 0, then instead of the single partial

fraction
Ax + B

ax2 + bx + c
, the sum

A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)2
+ ... +

Arx + Br

(ax2 + bx + c)r

occurs in the partial fraction decomposition of R(x)/Q(x). Each of these terms can be inte-
grated by completing the square and making the tangent substitution.

Example 10. Find

∫

x3 + 1

x3 − x2
dx

SOLUTION.
x3 + 1

x3 − x2
= 1 +

1 + x2

x3 − x2

1 + x2

x3 − x2
=

1 + x2

x2(x − 1)
=

A

x
+

B

x2
+

C

x − 1

1 + x2

x2(x − 1)
=

A

x
+

B

x2
+

C

x − 1

∣

∣

∣

∣

× x2(x − 1)

1 + x2 = Ax(x − 1) + B(x − 1) + Cx2

x = 0 : 1 = B

x = 1 : 2 = C

x = −1 : 2 = (−2)(−1)A − 2B + C

Thus, A = 1, B = 1, C = 2, and

1 + x2

x2(x − 1)
=

1

x
+

1

x2
+

2

x − 1

Then



∫

x3 + 1

x3 − x2
dx =

∫
(

1 +
1

x
+

1

x2
+

2

x − 1

)

dx = x + ln |x| − 1

x
+ 2 ln |x − 1| + C

(c) Integration by parts. If f(x) is a product of a power of x (or a polynomial) and
transcendental function (such as a trigonometric, exponential, logarithmic function), then we
try integration by parts.

∫

f ′(x)g(x)dx = f(x)g(x) −
∫

f(x)g′(x)dx

b
∫

a

f ′(x)g(x)dx = f(x)g(x)|ba −
b

∫

a

f(x)g′(x)dx

Example 11. Evaluate
2
∫

0

e
√

xdx

SOLUTION.
2
∫

0

e
√

xdx =

∣

∣

∣

∣

u =
√

x → x = u2 x = 0 → u = 0

dx = 2udu x = 2 → u =
√

2

∣

∣

∣

∣

= 2

√
2

∫

0

ueudu =

∣

∣

∣

∣

f ′(u) = eu f(u) = eu

g(u) = u g′(u) = 1

∣

∣

∣

∣

= 2(ueu|
√

2
0 −

√
2

∫

0

eudu) = 2(
√

2e
√

2 − eu|
√

2
0 ) = 2(

√
2e

√
2 − e

√
2 + 1)

(d) Radicals. If
√
±x2 ± a2 occurs, we use a trigonometric substitution according to the

following table

Table of trigonometric substitutions

Expression Substitution Identity√
a2 − x2 x = a sin t,−π/2 ≤ t ≤ π/2 1 − sin2 t = cos2 t

√
a2 + x2 x = a tan t,−π/2 < t < π/2 1 + tan2 t = sec2 t

√
x2 − a2 x = a sec t, 0 ≤ t ≤ π/2 or π ≤ t ≤ 3π/2 sec2 t − 1 = tan2 t

Example 12. Find
∫ √

1 + 4x − x2dx.

SOLUTION. Let’s complete the square under the root sign:

1 + 4x − x2 = −(x2 − 4x − 1) = −(x2 − 4x + 4 − 4 − 1) = −((x − 2)2 − 5) = 5 − (x − 2)2

∫ √
1 + 4x − x2dx =

∫
√

5 − (x − 2)2dx =

∣

∣

∣

∣

x − 2 = u
dx = du

∣

∣

∣

∣

=
∫ √

5 − u2du =

∣

∣

∣

∣

∣

∣

u =
√

5 sin t

du =
√

5 cos tdt√
5 − u2 =

√
5 cos t

∣

∣

∣

∣

∣

∣

=

∫ √
5 cos t

√
5 cos tdt = 5

∫

cos2 tdt = 5

∫

1 + cos 2t

2
dt =

5

2

(

t +
1

2
sin 2t

)

+ C

Since sin t =
u√
5
, then cos t =

√

1 − sin2 t =
1√
5

√
5 − u2 and

sin 2t = 2 sin t cos t = 2
u√
5

1√
5

√
5 − u2 =

2u

5

√
5 − u2



Thus,

5

2

(

t +
1

2
sin 2t

)

+ C =
5

2

(

arcsin
u√
5

+
2

5
u
√

5 − u2

)

+ C =

5

2

(

arcsin
x − 2√

5
+

2

5
(x − 2)

√

5 − (x − 2)2

)

+ C

4. Try again If the first three steps have not produced the answer, remember that there
are basically two methods of integration: substitution and parts. Sometimes two or three
methods are required to evaluate an integral.


