The Test 2 will be held on Thursday, Oct. 23, at 7:30-9:30 PM in HELD 105.
It will cover sections 8.8, 8.9, 9.1-9.6. Calculators are not allowed on the test.

Chapter 8. Techniques of integration
 Section 8.8 Approximate integration

Trapezoidal Rule

$$
\int_{a}^{b} f(x) d x \approx T_{n}=\frac{b-a}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

here $x_{i}=a+i \Delta x$

Simpson's Rule

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \approx S_{n}=\frac{b-a}{3 n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\right. \\
\left.4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{gathered}
$$

where n is even.
Example 1. Use (a) the Trapezoidal Rule and (b) the Simpson's Rule to approximate the integral

$$
\int_{1}^{3} x^{2} d x
$$

with $n=4$.

Section 8.9 Improper integrals

Definition of an improper integral of type 1 (infinite intervals)
(a) If $\int_{a}^{t} f(x) d x$ exists for every number $t \geq a$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

provided this limit exists (as a finite number)
(b) If $\int_{t}^{b} f(x) d x$ exists for every number $t \leq b$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

provided this limit exists (as a finite number)
The improper integrals in (a) and (b) are called convergent if the limit exist and divergent if the limit does not exist.
(c) If both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

where a is any real number.

$$
\int_{1}^{\infty} \frac{1}{x^{p}}= \begin{cases}\frac{1}{p-1}, & p>1 \\ \infty, & p \leq 1\end{cases}
$$

Definition of an improper integral of type 2 (discontinuous integrands)

(a) If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if this limit exists (as a finite number)
(b) If f is continuous on $(a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if this limit exists (as a finite number)
The improper integrals in (a) and (b) are called convergent if the limit exist and divergent if the limit does not exist.
(c) If f has discontinuity at $c(a<c<b)$, and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Example 2. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
(a) $\int_{1}^{\infty} \frac{\sqrt{x}}{2 x+3} d x$
(b) $\int_{1}^{\infty} \frac{e^{-x}}{x} d x$
(c) $\int_{0}^{4} \frac{1}{x^{2}+x-6} d x$

Chapter 9. Further applications of integration Section 9.1 Differential equations

Definition. Equation that contains some derivatives of an unknown function is called a differential equation.

Definition. The order of a differential equation is the order of the highest-order derivatives present in equation.

Definition. A function f is called a solution of a differential equation if the equation is satisfied when $y=f(x)$ and its derivatives are substituted into the equation.

When we are asked to solve a differential equation we are expected to find all possible solutions to this equation.

We are interested in first order differential equations

$$
\frac{d y}{d x}=f(x, y)
$$

In many problems we need to find the particular solution to the equation

$$
\frac{d y}{d x}=f(x, y)
$$

that satisfies a condition

$$
y\left(x_{0}\right)=y_{0}
$$

The condition $y\left(x_{0}\right)=y_{0}$ is called the initial condition. The problem of finding a solution to the differential equation that satisfies the initial condition is called an initial value problem.

A separable equation is a first order differential equation that can be written in the form

$$
\frac{d y}{d x}=f(x) g(y) \quad \text { or } \quad \frac{d y}{d x}=\frac{f(x)}{h(y)}
$$

To solve this equation we rewrite it in the differential form

$$
h(y) d y=f(x) d x
$$

Then we integrate both sides of the equation

$$
\int h(y) d y=\int f(x) d x
$$

The general solution to this equation is

$$
H(y)=F(x)+C
$$

where $H(y)$ is an antiderivative of $h(y), F(x)$ is an antiderivative of $f(x), C$ is a constant.

Section 9.2 First order linear equations

A first order linear differential equation is an equation that can be written in the form

$$
y^{\prime}+P(x) y=Q(x)
$$

where $P(x)$ and $Q(x)$ are continuous functions.

To solve the first order linear equation

(a) Find the integrating factor $I(x)=e^{\int P(x) d x}$
(b) Integrate the equation

$$
\frac{d}{d x}[I(x) y]=I(x) Q(x)
$$

and solve it for y by dividing by $I(x)$.
Example 3. Solve the differential equation/initial value problem.
(a) $y^{\prime}=\frac{\ln x}{x y+x y^{3}}$
(b) $x y^{\prime}-3 y=x^{2}, x>0, y(1)=0$

Chapter 9. Further applications of integration
 Section 9.3 Arc length

If a curve C is defined by the equations

$$
x=x(t), \quad y=y(t), \quad a \leq t \leq b
$$

then its length is

$$
L=\int_{a}^{b} \sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}} d t
$$

If the curve C is given by the equation

$$
y=y(x), \quad a \leq x \leq b, \text { then } L=\int_{a}^{b} \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
$$

If the curve C is given by the equation

$$
x=x(y), \quad c \leq y \leq d, \text { then } L=\int_{c}^{d} \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y
$$

Example 4. Find the length of the curve $x=t-\sin t, y=1-\cos t, 0 \leq t \leq 2 \pi$

Section 9.4 Area of a surface of revolution

A surface of revolution is formed when a curve is rotated about a line.
Consider the surface which is obtained by rotating the curve $y=f(x), a \leq x \leq b$ about the x-axis, $f(x)>0$ for all x in $[a, b]$ and $f^{\prime}(x)$ is continuous.

The area of the surface is

$$
S_{X}=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
$$

If the curve is described as $x=g(y), c \leq y \leq d$, then the formula for the surface area is

$$
S_{X}=2 \pi \int_{c}^{d} y \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y=2 \pi \int_{c}^{d} y \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y
$$

If a curve C is defined by the equations $x=x(t), y=y(t), a \leq t \leq b$, then the area of the surface generated by rotating C about x-axis is

$$
S_{X}=2 \pi \int_{a}^{b} y(t) \sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}} d t
$$

Example 5. Find the area of the surface obtained by rotating the curve $y=\sin x$, $0 \leq x \leq \pi$ about x-axis

If the curve is given as $y=f(x), a \leq x \leq b$, the area of the surface generated by rotating the curve about y-axis is

$$
S_{Y}=2 \pi \int_{a}^{b} x \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
$$

If the curve is described as $x=g(y), c \leq y \leq d$, then the area of the surface generated by rotating the curve about y-axis is

$$
S_{Y}=2 \pi \int_{c}^{d} g(y) \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y
$$

If the curve is defined by the equations $x=x(t), y=y(t), a \leq t \leq b$, then the area of the surface generated by rotating the curve about y-axis is

$$
S_{Y}=2 \pi \int_{a}^{b} x(t) \sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}} d t
$$

Example 6. Find the area of the surface obtained by rotating the curve $x=y^{3}, 1 \leq y \leq 2$ about y-axis

Section 9.5 Moments and centers of mass

Consider a flat plate with uniform density ρ that occupies a region $R=\{(x, y): a \leq x \leq$ $b, g(x) \leq y \leq f(x)\}$.

The moment of R about x-axis is

$$
M_{x}=\frac{1}{2} \rho \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x
$$

The moment of R about y-axis is

$$
M_{y}=\rho \int_{a}^{b} x[f(x)-g(x)] d x
$$

The centroid of R is located at the point (\bar{x}, \bar{y}), where

$$
\begin{aligned}
\bar{x} & =\frac{\int_{a}^{b} x[f(x)-g(x)] d x}{\int_{a}^{b}[f(x)-g(x)] d x} \\
\bar{y}= & \frac{\int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x}{\int_{a}^{b}[f(x)-g(x)] d x}
\end{aligned}
$$

Example 7. Find the centroid of the region bounded by $y=\sqrt{x}$ and $y=x$.

Section 9.6 Hydrostatic pressure and force

Example 8. A tank contains water. The end of the tank is vertical and has the shape of a isosceles triangle with the base 4 m and the heigh 6 m . Find the hydrostatic force against the end of the tank.

