1. Find the area of the region bounded by the parabola $y=x^{2}$, tangent line to this parabola at $(1,1)$, and the x-axis.
2. Find the volume of a frustum of a right circular cone with height h, lower base radius R, and top radius r.
3. Use washers to find the volume of a solid bounded by $y=\cos x, y=0, x=0, x=\frac{\pi}{2}$ about the line $y=1$.
4. Use cylindrical shells to find the volume of a solid bounded by $y=e^{x}, y=e^{-x}, x=1$ about the y-axis.
5. The tank in a shape of hemisphere with radius 5 ft is full of water. Find the work done in pumping all the water to the top of the tank. Use the fact that water weighs $62.5 \mathrm{lb} / \mathrm{ft}^{3}$.
6. Evaluate the integral
(a) $\int \sin ^{2} x \cos ^{4} x d x$
(b) $\int_{0}^{\pi / 4} \tan ^{4} x \sec ^{2} x d x$
(c) $\int \tan x \sec ^{3} x d x$
(d) $\int \sin 3 x \cos x d x$
(e) $\int \frac{x^{2}}{\sqrt{5-x^{2}}} d x$
(f) $\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x$
(g) $\int \frac{\sqrt{9 x^{2}-4}}{x} d x$
(h) $\int \frac{x^{2} d x}{(x-3)(x+2)^{2}}$
(i) $\int \frac{x^{4} d x}{x^{4}-1}$
(j) $\int \frac{x^{4}+1}{x\left(x^{2}+1\right)^{2}} d x$
(k) $\int \frac{x d x}{x^{2}+x+1}$
(l) $\int \frac{x d x}{\left(x^{2}+x+1\right)^{2}}$
7. Determine whether the integral is convergent. Evaluate those that are convergent.
(a) $\int_{0}^{\infty} \frac{d x}{(x+2)(x+3)}$
(b) $\int_{0}^{\infty} x e^{-x} d x$
(c) $\int_{1}^{17} \frac{d x}{\sqrt[3]{x-9}}$
8. Find the length of the curve.
(a) $y=\ln (\sin x), \pi / 6 \leq x \leq \pi / 3$
(b) $x=y^{3 / 2}, 0 \leq y \leq 1$
(c) $x=3 t-t^{3}, y=3 t^{2}, 0 \leq t \leq 2$
9. Find the surface area of a torus.
10. Determine whether the sequence is convergent or divergent. If it is convergent, find its limit.
(a) $a_{n}=\sin n$
(b) $a_{n}=\frac{n}{\ln n}$
(c) $a_{n}=\frac{\pi^{n}}{3^{n}}$
(d) $a_{n}=\frac{n}{2 n+5}$
(e) $a_{n}=\sqrt{n+2}-\sqrt{n-1}$
11. Show that the sequence defined by $a_{1}=1, a_{n+1}=3-\frac{1}{a_{n}}$ is increasing and $a_{n}<3$ for all n. Find its limit.
12. Find the sum of the series
(a) $\sum_{n=1}^{\infty} \frac{2^{2 n+1}}{3^{3 n-1}}$
(b) $\sum_{n=3}^{\infty} \frac{1}{n^{2}-4}$
13. Which of the following series is convergent?
(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{5 / 7}+1}$
(b) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{3^{n}}$
(c) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
14. Which of the following series is absolutely convergent?
(a) $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}$
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$
(c) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{\sqrt{n-2}}$
(d) $\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n}}{3^{3 n}}$
15. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}(x-3)^{n}}{\sqrt{n+3}}$.
16. Find the power series representation for the function $f(x)=\ln (1-2 x)$ centered at 0 .
17. Find the Taylor series for $f(x)=x e^{2 x}$ at $x=2$.
18. Find the Maclaurin series for $f(x)=x \sin \left(x^{3}\right)$.
19. Find the sum of the series
(a) $\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{2}}{n!}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$
20. Evaluate the indefinite integral as a power series $\int e^{x^{2}} d x$.
21. Find the angle between the vectors $\vec{a}=\vec{\imath}+\vec{\jmath}+2 \vec{k}$ and $\vec{b}=2 \vec{\jmath}-3 \vec{k}$.
22. Find the directional cosines for the vector $\vec{a}=-2 \vec{\imath}+3 \vec{\jmath}+\vec{k}$.
23. Find the scalar and the vector projections of the vector $\langle 2,-3,1\rangle$ onto the vector $<1,6,-2>$.
24. Given vectors $\vec{a}=<-2,3,4>$ and $\vec{b}=<1,0,3>$. Find $\vec{a} \times \vec{b}$.
25. Find the volume of the parallelepiped determined by vectors $\vec{a}=<1,0,6>, \vec{b}=<$ $2,3,-8>$, and $\vec{c}=<8,-5,6>$.
26. Represent the point with Cartesian coordinates $(2 \sqrt{3},-2)$ in terms of polar coordinates.
27. Sketch the curve $r=\sin 5 \theta$.
