1. Evaluate the integral

(a)
$$\int \frac{x^2 dx}{(x-3)(x+2)^2}$$

(b)
$$\int \frac{x^4 dx}{x^4 - 1}$$

(c)
$$\int \frac{x^4 + 1}{x(x^2 + 1)^2} dx$$

(d)
$$\int \frac{x dx}{x^2 + x + 1}$$

2. Determine whether the integral is convergent. Evaluate those that are convergent.

(a)
$$\int_{0}^{\infty} \frac{dx}{(x+2)(x+3)}$$

(b)
$$\int_{0}^{\infty} xe^{-x} dx$$

(c)
$$\int_{1}^{17} \frac{dx}{\sqrt[3]{x-9}}$$

- 3. Find the length of the curve.
 - (a) $y = \ln(\sin x), \pi/6 \le x \le \pi/3$
 - (b) $x = y^{3/2}, 0 \le y \le 1$
 - (c) $x = 3t t^3, y = 3t^2, 0 \le t \le 2$
- 4. Find the surface area of a torus.
- 5. Determine whether the sequence is convergent or divergent. If it is convergent, find its limit.

(a)
$$a_n = \sin n$$

(b) $a_n = \frac{n}{\ln n}$
(c) $a_n = \frac{\pi^n}{3^n}$
(d) $a_n = \frac{n}{2n+5}$
(e) $a_n = \sqrt{n+2} - \sqrt{n-1}$

6. Show that the sequence defined by $a_1 = 1$, $a_{n+1} = 3 - \frac{1}{a_n}$ is increasing and $a_n < 3$ for all n. Find its limit.