1. Evaluate the integral
(a) $\int \frac{x^{2} d x}{(x-3)(x+2)^{2}}$
(b) $\int \frac{x^{4} d x}{x^{4}-1}$
(c) $\int \frac{x^{4}+1}{x\left(x^{2}+1\right)^{2}} d x$
(d) $\int \frac{x d x}{x^{2}+x+1}$
2. Determine whether the integral is convergent. Evaluate those that are convergent.
(a) $\int_{0}^{\infty} \frac{d x}{(x+2)(x+3)}$
(b) $\int_{0}^{\infty} x e^{-x} d x$
(c) $\int_{1}^{17} \frac{d x}{\sqrt[3]{x-9}}$
3. Find the length of the curve.
(a) $y=\ln (\sin x), \pi / 6 \leq x \leq \pi / 3$
(b) $x=y^{3 / 2}, 0 \leq y \leq 1$
(c) $x=3 t-t^{3}, y=3 t^{2}, 0 \leq t \leq 2$
4. Find the surface area of a torus.
5. Determine whether the sequence is convergent or divergent. If it is convergent, find its limit.
(a) $a_{n}=\sin n$
(b) $a_{n}=\frac{n}{\ln n}$
(c) $a_{n}=\frac{\pi^{n}}{3^{n}}$
(d) $a_{n}=\frac{n}{2 n+5}$
(e) $a_{n}=\sqrt{n+2}-\sqrt{n-1}$
6. Show that the sequence defined by $a_{1}=1, a_{n+1}=3-\frac{1}{a_{n}}$ is increasing and $a_{n}<3$ for all n. Find its limit.
