7. Find the sum of the series

$$
\begin{aligned}
& \text { (a) } \sum_{n=1}^{\infty} \frac{2^{2 n+1}}{3^{3 n-1}} \\
& =\sum_{n=1}^{\infty} \frac{2 \cdot 2^{2 n}}{\frac{1}{3} 3^{3 n}} \\
& =\sum_{n=1}^{\infty} 6\left(\frac{2^{2}}{3^{3}}\right)^{n} \\
& =\sum_{n=1}^{\infty} 6\left(\frac{4}{27}\right)^{n} \\
& =\sum_{n=1}^{\infty} 6\left(\frac{4}{27}\right)\left(\frac{4}{27}\right)^{n-1} \\
& =\frac{6 \frac{4}{27}}{1-\frac{4}{27}} \\
& =\frac{\frac{24}{27}}{\frac{23}{27}} \\
& =\frac{24}{23}
\end{aligned}
$$

(b) $\sum_{n=3}^{\infty} \frac{1}{n^{2}-4} \quad$ Partial fractions:

$$
\begin{aligned}
& \frac{1}{n^{2}-4}=\frac{1}{(n-2)(n+2)}=\frac{A}{n-2}+\frac{B}{n+2} \\
& =\frac{A(n+2)+B(n-2)}{(n-2)(n+2)} \\
& 1=A(n+2)+B(n-2) \\
& n=-2: \quad 1=-4 B \rightarrow B=-\frac{1}{4} \\
& n=2: \quad 1=4 A \rightarrow A=\frac{1}{4} \\
& \frac{1}{n^{2}-4}=\frac{1}{4}\left(\frac{1}{n-2}-\frac{1}{n+2}\right)
\end{aligned}
$$

Title : Nov 21-11:23 AM (Page 3 of 13)

$$
\begin{aligned}
& S=\lim _{n \rightarrow \infty} S_{n}=\frac{1}{4} \lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{n-1}-\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\right) \\
&=\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right) \\
&=\frac{1}{4} \frac{24+12+8+6}{24} \\
&=\frac{1}{4} \frac{50}{24} \\
&=\frac{25}{48}
\end{aligned}
$$

1. Which of the following series is convergent?

(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{5 / 7}+1}$

$$
\text { compare with } \sum_{n=1}^{\infty} \frac{n^{2}}{n^{5 / 7}}=\sum_{n=1}^{\infty} n^{2-5 / 7}=\sum_{n=1}^{\infty} n^{9 / 7}
$$

$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n^{9 / 7}=\infty$
divergent fy the Test for Divergence
$\left(\lim _{n \rightarrow \infty} a_{n} \neq 0\right)$
(b) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{3^{n}}$
$0 \leq \cos ^{2} n \leq 1$
$\frac{\cos ^{2} n}{3^{n}} \leqslant \frac{1}{3^{n}}$
$\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ converges (geometric series,
$\left.r=\frac{1}{3}<1\right)$
By Comparison Test 1, $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{3^{n}}$ converges
(c) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$

Do the Integral Test.
$f(x)=\frac{1}{x(\ln x)^{2}}$ is positive on $[2, \infty)$
$x(\ln x)^{2}$ turns zero at $x=0, x=1$
$\frac{1}{x(\ln x)^{2}}$ is continuous on $[2, \infty)$
$f^{\prime}(x)=02 \sqrt{x} \ln -1(x(\ln x))^{-2}\left[(\ln x)^{2}-2 x \ln x \cdot \frac{1}{x}\right]$
$=-1\left(\frac{\ln ^{2} x-2}{x^{2}(\ln x)^{4}}\right)=\frac{2-\ln ^{2} x}{x^{2} \ln ^{4} x}<0$

$$
\begin{aligned}
& \left.x^{4} \ln x\right)^{4} \\
& 2-\ln ^{2} x<0, \quad \frac{a}{x^{2} \ln ^{4} x} \quad \text {, } x>\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } \int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}=\frac{1}{\ln 2} \text { con } \\
& \text { then, by the Integral Test, } \\
& \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}} \text { converges. }
\end{aligned}
$$

Title : Nov 21-11:24 AM (Page 6 of 13)

$$
\begin{aligned}
& \text { fix) is decreasing on }\left[4.06, \infty^{x\rangle]^{\sqrt{2}} \approx 4.06}\right. \\
& \left|\begin{array}{l}
u=\ln x \\
d u=\frac{d x}{x}
\end{array}\right|=\int_{\operatorname{en} 2}^{\infty} \frac{d x u^{2}}{u^{2}}=-\left.\frac{1}{u}\right|_{\ln 2} ^{\infty}=0-\frac{1}{\ln 2^{2}}
\end{aligned}
$$

4. Which of the following series is absolutely convergent?
(a) $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!} \quad$ Ratio Test for $a_{n}=\frac{(-3)^{n}}{n!}$ $\begin{aligned} \sum_{n=0} & \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n} m_{3}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-3)^{n+1}}{(n+1)!}}{\frac{(-3)^{n}}{(n+1)!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-3)}{n+1}\right|= \\ & =0<1\end{aligned}$ converges absolutely
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$

$$
\sum_{n=1}^{\infty}\left|(-1)^{n-1} \frac{1}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n} \text {-diverges }(-1)^{n-1}-\frac{1}{n} \text {-ammonic series). }
$$

$$
b_{n}=\frac{1}{n} \quad b_{n+1}=\frac{1}{n+1}<b_{n}=\frac{1}{n}
$$

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n} \text { converges by AST, but not }
$$

(c) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{\sqrt{n-2}}$
$\sum_{n=1}^{\infty}\left|(-1)^{n-1} \frac{n}{\sqrt{n-2}}\right|=\sum_{n=1}^{\infty} \frac{n}{\sqrt{n-2}}$
Cos $\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n-2}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n} \sqrt{1-\frac{2}{n}}}=$

$$
=\lim \sqrt{n}=\infty
$$ diverges by the Test fyffor Divergence.

AST: $\lim _{n \rightarrow \infty} 6 n=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n-2}}=\infty$.
diverges by AST
(d) $\sum_{=0}^{\infty}(-1)^{n^{2 n}} \frac{2^{3 n}}{3^{3 n}}$
$\sum_{n=0}^{\infty}\left|(-1)^{n} \frac{2^{2 n}}{3^{3 n}}\right|=\sum_{n=0}^{\infty} \frac{2^{2 n}}{3^{3 n}}=\sum_{n=0}^{\infty}\left(\frac{4}{27}\right)^{n}$
converges (geometric series for $r=\frac{4}{27}<1$)
The series converges absolutely.
5. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}(x-3)^{n}}{\sqrt{n+3}}$.

The radius of converges
$R=\lim _{n \rightarrow \infty}\left(\left.\frac{c_{n}}{c_{n+1}} \right\rvert\,\right.$, where $c_{n}=\frac{2^{n}}{\sqrt{n+3}}$
$R=\lim _{n \rightarrow \infty}\left|\frac{2^{n}}{\sqrt{n+3}} \cdot \frac{\sqrt{n+4}}{2^{n+1}}\right|=\frac{1}{2}$.
The interval of convergence:

$$
\begin{aligned}
|x-3| & <\frac{1}{2} \\
-\frac{1}{2} & x-3<\frac{1}{2} \\
+\frac{5}{2}<x & <\frac{7}{2}
\end{aligned}
$$

$x=\frac{7}{2}: \sum_{n=1}^{\infty} \frac{2^{n}\left(\frac{7}{2}-3\right)^{n}}{\sqrt{n+3}}=\sum_{n=1}^{\infty} \frac{2^{n}\left(\frac{1}{2}\right)^{n}}{\sqrt{n+3}}=\frac{\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+3}} \text { absolutely. }}{\text { diverges. }}$
interval of convergence: $\quad\left[\frac{5}{2}, \frac{7}{2}\right]$

$$
R=\frac{1}{2}
$$

6. Find the power series representation for the function $f(x)=\ln (1-2 x)$ centered at 0 .

$$
\begin{aligned}
& \quad \frac{1}{1-2 x}=\sum_{n=0}^{\infty}(+1)^{n}(2 x)^{n}=\sum_{n=0}^{\infty}(+1)^{n} 2^{n} x^{n} \\
& \ln (1-2 x)=-2 \int \frac{1}{1-2 x} d x=-2 \int\left(\sum_{n=0}^{\infty}(+1)^{n} 2^{n} x^{n}\right) d x \\
& =-2 \sum_{n=0}^{\infty}(+1)^{n} 2^{n}\left(\int x^{n} d x\right)=\sum_{n=0}^{\infty} 1(+2)^{n+1} \frac{x^{n+1}}{n+1}+C \\
& C: \quad \operatorname{lng} \quad x=0 ; \\
& \ln 1=C \Rightarrow C=0 .
\end{aligned}
$$

7. Find the Taylor series for $f(x)=x e^{2 x}$ at $x=2$.

$$
\begin{aligned}
f(x) & =x e^{2 x} \\
f^{\prime}(x) & =e^{2 x}+2 x e^{2 x}=1 \cdot 2^{\circ} e^{2 x}+2^{\prime} x e^{2 x}
\end{aligned}
$$

$$
f^{\prime \prime}(x)=2 e^{2 x}+2 e^{2 x}+4 x e^{2 x}
$$

$$
\begin{aligned}
& =2 e^{2 x}+2 e^{2 x}+4 x e^{2 x} \\
& =4 e^{2 x}+4 x e^{2 x}=2 \cdot 2^{1} e^{2 x}+2^{2} x e^{2 x}
\end{aligned}
$$

$$
f^{\prime \prime \prime}(x)=8 e^{2 x}+4 e^{2 x}+8 x e^{2 x}
$$

$$
=12 e^{2 x}+8 x e^{2 x}=3 \cdot 2^{2} e^{2 x}+2^{3} x e^{2 x}
$$

$$
\begin{aligned}
& f^{(n)}(x)=n \cdot 2^{n-1} e^{2 x}+2^{n} x e^{2 x} \\
& x e^{2 x}=\frac{\sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!}(x-2)^{n}=\sum_{n=0}^{\infty} \frac{\left(n 2^{n-1}+2^{n} \cdot 2\right) e^{4}}{n!}(x-2)^{n}}{}
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty} \frac{\left(n 2^{n-1}+2^{n+1}\right) e^{4}}{n!}(x-2)^{n}
$$

8. Find the Maclaurin series for $f(x)=x \sin \left(x^{3}\right)$.

$$
\begin{aligned}
& \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& \sin x^{3}=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{3}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1) x^{n} 6 n+3}{(2 n+1)!} \\
& x \sin x^{3}=x \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+3}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+4}}{(2 n+1)!}
\end{aligned}
$$

9. Find the sum of the series
(a) $\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{2}}{n!}=x^{2} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!}=x^{2}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}-1+1\right]$ $=x^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=x^{2} e^{-1}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{\pi}{6}\right) \frac{2 n}{(2 n)!}=\cos \frac{11}{6}=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \text { 10. Evaluate the indefinite integral as a power series } \int e^{x^{x^{2}} d x}=\sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!} \\
& \int e^{2 n} d x \\
& \left.=\int \sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}\right) d x=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\int x^{2 n} d x\right) \\
& =\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1) n!}+C
\end{aligned}
$$

10. Find the length of the medians of the triangle withvertices $A(1,2,3), B(-2,0,5), C(4,1,5)$.
11. Find the equation of the sphere with center $(2,-3,6)$ that touches the $y z$-plane.
12. Find an equation of the set of all points equidistant from the points $A(-1,5,3)$ and $B(6,2,-2)$.
\# 10.

midpoints for the sides:

$$
\begin{aligned}
& M_{1}\left(\frac{1+(-2)}{2}, \frac{2+0}{2}, \frac{3+5}{2}\right)=M_{1}\left(\frac{-1}{2}, 1,4\right) \\
& M_{2}\left(\frac{-2+4}{2}, \frac{0+1}{2}, \frac{5+5}{2}\right)=\left(M_{2}\left(1, \frac{1}{2}, 5\right)\right. \\
& M_{3}\left(\frac{1+4}{2}, \frac{2+1}{2}, \frac{3+5}{2}\right)=M_{3}\left(\frac{5}{2}, \frac{3}{2}, 4\right)
\end{aligned}
$$

begin medians.

$$
\begin{aligned}
& C M_{1}=\sqrt{\left(-\frac{1}{2}+1\right)^{2}+(1-2)^{2}+} \\
& C M_{1}=\sqrt{\left(4+\frac{1}{2}\right)^{2}+(1-1)^{2}+(4-5)^{2}}=\sqrt{\frac{81}{4}+1}=\sqrt{\frac{\sqrt{85}}{2}} \\
& A M_{2}=\sqrt{(1-1)^{2}+\left(\frac{1}{2}-2\right)^{2}+(5-3)^{2}}=\sqrt{\frac{9}{4}+4}=\frac{(151}{2}=\sqrt{2} \\
& B M_{3}=\sqrt{\left(\frac{5}{2}+2\right)^{2}+\left(\frac{3}{2}\right)^{2}+(4-5)^{2}}=\sqrt{\frac{81}{4}+\frac{4}{4}+1} \\
& =\sqrt{\frac{94}{4}}=\frac{\sqrt{94}}{}
\end{aligned}
$$

\#1. $R=$ the distance from $(2,-3,6)$
to the $(y z)$-plane

$$
R=2
$$

Equation: $(x-2)^{2}+(-3 y+3)^{2}+(z-6)$
\#12. $P(x, y, z), A(-1,5,3), B(6,2,-2)$

$$
\begin{aligned}
& P A=P B \\
& P A=\sqrt{(-1-x)^{2}+(5-y)^{2}+(3-z)^{2}} \\
& P B=\sqrt{(6-x)^{2}+(2-y)^{2}+(-2-z)^{2}} \\
& (-1-x)^{2}+(5-y)^{2}+(3-z)^{2}=(6-x)^{2}+(2-y) \\
& 1+2 x+y^{2}+25-15 y+y^{2}+9-6 z+z^{2} \\
& \quad=36-12 x+y^{2}+4-4 y+y^{2}+4+4 z . \\
& 2 x+12 x-15 y+4 y-6 z-4 z+35-44=0 \\
& 14 x-4 \ln 11 y-10 z-9=0 \quad \text { plane. }
\end{aligned}
$$

