Chapter 10. Infinite sequences and series

 Section 10.4 Other Convergence TestsAn alternating series is a series of the form

$$
b_{1}-b_{2}+b_{3}-b_{4}+\ldots=\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}
$$

where $b_{n}>0$ for all n.

The Alternating Series Test If the series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ satisfies
(a) $b_{n+1} \leq b_{n}$ for all n
(b) $\lim _{n \rightarrow \infty} b_{n}=0$,
then the series is convergent.
Example 1. Test the series for convergence or divergence.
(a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{2^{n}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{6 n-5}$

Alternating series estimating theorem If $s=\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ is the sum of alternating series that satisfies the Alternating Series Test, then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}
$$

Definition A series $\sum_{n=1}^{\infty} a_{n}$ is called absolutely convergent if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.

Theorem If a series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then it is convergent.
Example 2. Determine whether the series is absolutely convergent.
(a) $\sum_{n=1}^{\infty} \frac{\sin 2 n}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+1}$

The Ratio Test Given a series $\sum_{n=1}^{\infty} a_{n}$. Let

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

1. If $L<1$, then the series is absolutely convergent
2. If $L>1$, then the series is divergent
3. If $L=1$, then the test is inconclusive.

The Root Test Given a series $\sum_{n=1}^{\infty} a_{n}$. Let

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L
$$

1. If $L<1$, then the series is absolutely convergent
2. If $L>1$, then the series is divergent
3. If $L=1$, then the test is inconclusive.

Example 3. Test the series for absolutely convergence, convergence or divergence
(a) $\sum_{n=1}^{\infty}\left(\frac{n}{3 n+1}\right)^{n}$
(b) $\sum_{n=1}^{\infty} \frac{n^{2}}{2 n^{2}+1}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n!}$
(d) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{5^{n}}{n^{2}}$
(e) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{n^{n}}$

