Section 10.4 Other Convergence Tests

An alternating series is a series of the form

$$
b_{1}-b_{2}+b_{3}-b_{4}+\ldots=\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}
$$

where $b_{n}>0$ for all n.
The Alternating Series Test If the series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ satisfies
(a) $b_{n+1} \leq b_{n}$ for all n
(b) $\lim _{n \rightarrow \infty} b_{n}=0$,
then the series is convergent.
Example 1. Which of the following series is convergent

1. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$
2. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{\sqrt{n-2}}$
3. $\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n}}{3^{3 n}}$

Alternating series estimating theorem If $s=\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ is the sum of alternating series that satisfies the Alternating Series Test, then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}
$$

Example 2. Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n+2}}$ by using the sum of the first three terms. Estimate the error involved in this approximation.

Definition. A series $\sum_{n=1}^{\infty} a_{n}$ is called absolutely convergent if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.

Theorem. If a series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then it is convergent.
The Ratio Test Given a series $\sum_{n=1}^{\infty} a_{n}$. Let

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

1. If $L<1$, then the series is absolutely convergent
2. If $L>1$, then the series is divergent
3. If $L=1$, then the test is inconclusive.

The Root Test Given a series $\sum_{n=1}^{\infty} a_{n}$. Let

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L
$$

1. If $L<1$, then the series is absolutely convergent
2. If $L>1$, then the series is divergent
3. If $L=1$, then the test is inconclusive.

Example 3. Determine whether the series $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}$ is absolutely convergent.

Section 10.5 Power series

A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots
$$

Constants c_{n} are called the coefficients of the series.
More generally, a series of the form $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is called a power series centered at a or a power series about a.

A power series is convergent if $|x-a|<R$, where

$$
R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|
$$

or

$$
R=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{\left|c_{n}\right|}}
$$

R is called the radius of convergence.
If $R=0$, then the series converges only at one point $x=a$.
If $R=\infty$, then the series converges for all x.
If $R \neq 0$ and $R<\infty$, then the series converges if $a-R<x<a+R$. We also have to check the convergence at $x=a-R$ and $x=a+R$.

The interval of convergence of a power series is the interval that consists of all values of x for which the series is convergent.

Example 4. Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n-1}}{(2 n-1)!}
$$

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Theorem If the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then

1. $\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right)^{\prime}=\sum_{n=0}^{\infty}\left(c_{n}(x-a)^{n}\right)^{\prime}=\sum_{n=0}^{\infty} n c_{n}(x-a)^{n-1}$
2. $\int\left(\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right) d x=\sum_{n=0}^{\infty}\left(\int c_{n}(x-a)^{n} d x\right)=\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1}+C$

Example 5. Find the power series representation for the function

$$
f(x)=\tan ^{-1}\left(x^{2}\right)
$$

Section 10.7 Taylor and Maclaurin series

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

The series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ is called the Taylor series of f at a.
Example 6. Find the Taylor series for $f(x)=x^{3}+3 x^{2}+2$ at $x=2$.

If $a=0$, then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

The series $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ is called the Maclaurin series.

Important Maclaurin Series

1. $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$
2. $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
3. $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
4. $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
5. $(1+x)^{m}=1+m x+\frac{m(m-1)}{2!} x^{2}+\ldots+\frac{m(m-1) \ldots(m-n+1)}{n!} x^{n}+\ldots$

Example 7. Find the Maclaurin series for $f(x)=x \sin \left(x^{3}\right)$.

Example 8. Find the sum of the series

1. $\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{2}}{n!}$
2. $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$

Example 9. Evaluate the indefinite integral as a power series $\int e^{x^{2}} d x$.

Section 10.9 Applications of Taylor polynomials
Suppose that

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Let

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

T_{n} is called the n th-degree Taylor polynomial of f at a.
We can use a Taylor polynomial T_{n} to approximate f. But how good an approximation is? To answer this question we need to look at

$$
\left|R_{n}\right|=\left|f(x)-T_{n}(x)\right|
$$

1. If the series happen to be an alternating series, then

$$
\left|R_{n}\right| \leq \frac{\left|f^{(n+1)(a)}\right|}{(n+1)!}|x-a|^{n+1}
$$

2. In other cases we can use Taylor's Inequality, which says if $\left|f^{(n+1)}(x)\right| \leq M$, then

$$
\left|R_{n}\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

Example 10. Approximate $f(x)=\sin x$ by a Taylor polynomial of degree 5 at $\pi / 4$. How accurate is this approximation if $0 \leq x \leq \pi / 2$?

Chapter 11. Three-dimensional analytic geometry and vectors. Section 11.1 Three-dimensional coordinate system.

The three dimensional coordinate system is determined by three coordinate axes x-axis, y axis, and z-axes, that are perpendicular to each other. The direction of z-axis is determined by the right-hand rule: if your index finger points in the positive direction of the x-axis, middle finger points in the positive direction of the y-axis, then your thumb points in the positive direction of the z-axis.

The three coordinate axes determine the three coordinate planes. The $x y$-plane contains the x - and y-axes and its equation is $z=0$, the $x z$-plane contains the x - and z-axes and its equation is $y=0$, The $y z$-plane contains the y - and z-axes and its equation is $x=0$.

In three dimensional space we represent the point P by the ordered triple (a, b, c) of real numbers, and we call a, b, and c the coordinates of P.

The distance formula in three dimensions. The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

The midpoint of the line segment from $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
P_{M}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Equation of a sphere. An equation of a sphere with center (a, b, c) and radius R is

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=R^{2}
$$

Example 11. Find radius and center of sphere given by the equation

$$
x^{2}+y^{2}+z^{2}=6 x+4 y+10 z
$$

Section 11.2 Vectors and the dot product in three dimensions

Definition. A tree-dimensional vector is an ordered triple $\vec{a}=<a_{1}, a_{2}, a_{3}>$ of real numbers. The numbers a_{1}, a_{2}, and a_{3} are called the components of \vec{a}.

A representation of the vector $\vec{a}=<a_{1}, a_{2}, a_{3}>$ is a directed line segment $\overrightarrow{A B}$ from any point $A(x, y, z)$ to the point $B\left(x+a_{1}, y+a_{2}, z+a_{3}\right)$.

A particular representation of $\vec{a}=<a_{1}, a_{2}, a_{3}>$ is the directed line segment $\overrightarrow{O P}$ from the origin to the point $P\left(a_{1}, a_{2}, a_{3}\right)$, and $\vec{a}=<a_{1}, a_{2}, a_{3}>$ is called the position vector of the point $P\left(a_{1}, a_{2}, a_{3}\right)$.

Given the points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$, then $\overrightarrow{A B}=<x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}>$.
The magnitude (length) $|\vec{a}|$ of \vec{a} is the length of any its representation.
The length of \vec{a} is $|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$
The only vector with length 0 is the zero vector $\overrightarrow{0}=<0,0,0>$. This vector is the only vector with no specific direction.

If $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$, then

$$
\begin{gathered}
\vec{a}+\vec{b}=<a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}> \\
c \vec{a}=<c a_{1}, c a_{2}, c a_{3}>, \quad \text { where } c \text { is a scalar } \\
\vec{a}-\vec{b}=\vec{a}+(-\vec{b})=<a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}>
\end{gathered}
$$

Let $\vec{\imath}=<1,0,0>$ and $\vec{\jmath}=<0,1,0>, \vec{k}=<0,0,1>,|\vec{\imath}|=|\vec{\jmath}|=|\vec{k}|=1$.

$$
\vec{a}=<a_{1}, a_{2}, a_{3}>=a_{1} \vec{\imath}+a_{2} \vec{\jmath}+a_{3} \vec{k}
$$

A unit vector is a vector whose length is 1 .

A vector

$$
\vec{u}=\frac{1}{|\vec{a}|} \vec{a}=\left\langle\frac{a_{1}}{|\vec{a}|}, \frac{a_{2}}{|\vec{a}|}, \frac{a_{3}}{|\vec{a}|}\right\rangle
$$

is a unit vector that has the same direction as $\vec{a}=<a_{1}, a_{2}, a_{3}>$.
Definition. The dot or scalar product of two nonzero vectors \vec{a} and \vec{b} is the number

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

where θ is the angle between \vec{a} and $\vec{b}, 0 \leq \theta \leq \pi$. If either \vec{a} or \vec{b} is $\overrightarrow{0}$, we define $\vec{a} \cdot \vec{b}=0$.
$\vec{a} \cdot \vec{b}>0$ if and only if $0<\theta<\pi / 2$
$\vec{a} \cdot \vec{b}<0$ if and only if $\pi / 2<\theta<\pi$
Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is $\pi / 2$.

Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0$.
If $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$, then

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
\end{gathered}
$$

Example 12. Find the angle between the vectors $\vec{a}=\vec{\imath}+\vec{\jmath}+2 \vec{k}$ and $\vec{b}=2 \vec{\jmath}-3 \vec{k}$.

The direction angles of a nonzero vector \vec{a} are the angles α, β, and γ in the interval $[0, \pi]$ that \vec{a} makes with the positive $x-, y-$, and $z-$ axes. The cosines of these direction angles, $\cos \alpha, \cos \beta$, and $\cos \gamma$, are called the direction cosines of the vector \vec{a}.

$$
\cos \alpha=\frac{a_{1}}{|\vec{a}|}, \quad \cos \beta=\frac{a_{2}}{|\vec{a}|}, \quad \cos \gamma=\frac{a_{3}}{|\vec{a}|}
$$

Example 13. Find the directional cosines for the vector $\vec{a}=-2 \vec{\imath}+3 \vec{\jmath}+\vec{k}$.

$$
\begin{gathered}
\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \\
\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}<a_{1}, a_{2}, a_{3}>
\end{gathered}
$$

Example 14. Find the scalar and the vector projections of the vector $<2,-3,1>$ onto the vector $\langle 1,6,-2\rangle$.

