Chapter 10. Infinite sequences and series Section 10.1 Sequences

A sequence is a list of numbers written in a definite order:

$$a_1, a_2, \dots, a_n, \dots$$

Definition A sequence $\{a_n\}$ has the **limit** L and we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large.

If $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** or is **convergent**. Otherwise, we say the sequence **diverges** or is **divergent**

Limit Laws If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then

- 1. $\lim_{n \to \infty} [a_n + b_n] = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$
- 2. $\lim_{n \to \infty} [a_n b_n] = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$
- 3. $\lim_{x \to \infty} ca_n = c \lim_{n \to \infty} a_n$
- 4. $\lim_{n \to \infty} [a_n b_n] = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$
- 5. $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \text{ if } \lim_{n \to \infty} b_n \neq 0$ 6. $\lim_{n \to \infty} c = c$

The Squeeze Theorem If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Theorem If $\lim_{n \to \infty} |a_n| = 0$, then $\lim_{n \to \infty} a_n = 0$.

Example 1. Find the limit

(a)
$$\lim_{n \to \infty} (-1)^n \frac{n^2}{1+n^3}$$

(b)
$$\lim_{n \to \infty} \frac{\cos^2 n}{2^n}$$

(c) $\lim_{n \to \infty} \frac{\pi^n}{3^n}$

Definition A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing.

Example 2. Determine whether the sequence is increasing, decreasing, or not monotonic. (a) $a_n = \frac{1}{3n+5}$

(b)
$$a_n = 3 + \frac{(-1)^n}{n}$$

(c)
$$a_n = \frac{n-2}{n+2}$$

Definition A sequence $\{a_n\}$ is **bounded above** if there is a number M such that

 $a_n \leq M$ for all $n \geq 1$

It is **bounded below** if there is a number m such that

$$a_n \ge m$$
 for all $n \ge 1$

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**

Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

Example 3. Show that the sequence defined by

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{3 - a_n}$

is decreasing and bounded. Find the limit of $\{a_n\}$.