Chapter 10. Infinite sequences and series Section 10.2 Series

An expression of the form

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

is called an **infinite series** or **series**.

Consider partial sums:

$$s_1 = a_1,$$

 $s_2 = a_1 + a_2,$
 \dots
 $s_n = a_1 + a_2 + \dots + a_n$

Definition Given a series $\sum_{n=0}^{\infty} a_n$, and let $S_n = \sum_{k=1}^n a_k$. If the sequence $\{s_n\}_{n=1}^{\infty}$ converges and $\lim_{n \to \infty} s_n = s$, then the series is called **convergent** and we write

$$\sum_{n=0}^{\infty} a_n = s$$

The number s is called the sum of the series. Otherwise, the series is called **divergent**.

The geometric series

$$\sum_{n=0}^{\infty} ar^n = \begin{cases} \frac{a}{1-r}, & \text{if } |r| < 1\\ \infty, & \text{if } |r| \ge 1 \end{cases}$$

Example 1. Determine whether the series is convergent or divergent. If it is convergent, find its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

Example 2. Write the number $0.\overline{307}$ as a ratio of integers.

The harmonic series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent.

The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for p > 1 and divergent for $p \le 1$ **Theorem.** If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$. If $\lim_{n \to \infty} a_n = 0$, we can not conclude that $\sum_{n=1}^{\infty} a_n$ is convergent. **Test for divergence** If $\lim_{n \to \infty} a_n$ does not exist or $\lim_{n \to \infty} a_n \ne 0$, then $\sum_{n=1}^{\infty} a_n$ is divergent. **Example 3.** Show that $\sum_{n=1}^{\infty} \arctan n$ is divergent.

Theorem, If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series, then so are the series $\sum_{n=1}^{\infty} ca_n$ (where c is a constant), $\sum_{n=1}^{\infty} (a_n + b_n)$, $\sum_{n=1}^{\infty} (a_n - b_n)$, and:

(i)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$
 (ii) $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$
(iii) $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$

NOTE. A finite number of terms can not affect the convergence of the series. **Example 4.** Find the sum of the series $\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n}$.