An expression of the form

$$
a_{1}+a_{2}+\ldots+a_{n}+\ldots=\sum_{n=1}^{\infty} a_{n}
$$

is called an infinite series or series.
Consider partial sums:

$$
\begin{aligned}
& s_{1}=a_{1}, \\
& s_{2}=a_{1}+a_{2}, \\
& \ldots \\
& s_{n}=a_{1}+a_{2}+\ldots+a_{n}
\end{aligned}
$$

Definition Given a series $\sum_{n=0}^{\infty} a_{n}$, and let $S_{n}=\sum_{k=1}^{n} a_{k}$. If the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ converges and $\lim _{n \rightarrow \infty} s_{n}=s$, then the series is called convergent and we write

$$
\sum_{n=0}^{\infty} a_{n}=s
$$

The number s is called the sum of the series. Otherwise, the series is called divergent.
The geometric series

$$
\sum_{n=0}^{\infty} a r^{n}= \begin{cases}\frac{a}{1-r}, & \text { if }|r|<1 \\ \infty, & \text { if }|r| \geq 1\end{cases}
$$

Example 1. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
(a) $\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$

Example 2. Write the number $0 . \overline{307}$ as a ratio of integers.

The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent for $p>1$ and divergent for $p \leq 1$
Theorem. If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
If $\lim _{n \rightarrow \infty} a_{n}=0$, we can not conclude that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
Test for divergence If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Example 3. Show that $\sum_{n=1}^{\infty} \arctan n$ is divergent.

Theorem, If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series, then so are the series $\sum_{n=1}^{\infty} c a_{n}$ (where c is a constant $), \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right), \sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)$, and:
$\begin{array}{ll}\text { (i) } \sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n} & \text { (ii) } \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}\end{array}$
(iii) $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$

NOTE. A finite number of terms can not affect the convergence of the series.
Example 4. Find the sum of the series $\sum_{n=1}^{\infty} \frac{3^{n}+2^{n}}{6^{n}}$.

