Chapter 10. Infinite sequences and series
Section 10.3 The Integral and Comparison Tests; Estimating Sums
The Integral Test Suppose f is continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent.
n does not have to be 1 , it could be a different number. Function $f(x)$ has to be ultimately decreasing function, that is, decreasing for $x>N$.

Example 1. Determine whether the series is convergent or divergent.
(a) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+4}$

Example 2. Find the values of p for which the series is convergent.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$
(b) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$

The Comparison Test I Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series, such that $0<a_{n} \leq b_{n}$ for all n.
(a) If $\sum_{n=1}^{\infty} b_{n}$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is also convergent
(b) If $\sum_{n=1}^{\infty} a_{n}$ is divergent, then $\sum_{n=1}^{\infty} b_{n}$ is also divergent.

The Comparison Test II Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0
$$

Then either both series converge or both diverge.
Example 3. Determine whether the series is convergent or divergent.
(a) $\sum_{n=3}^{\infty} \frac{1}{n^{2}-4}$
(b) $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n \sqrt{n}}$
(c) $\sum_{n=1}^{\infty}\left(\frac{2}{n \sqrt{n}}+\frac{3}{n^{3}}\right)$
(d) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$

Estimating the sum of a series

Suppose we've been able to show that a series $\sum_{n=1}^{\infty} a_{n}$ converges by Integral Test. We want to find an approximation to the sum S of the series. We can approximate S by partial sums S_{n}. How good is such an approximation?

We need to estimate the size of the remainder

$$
R_{n}=s-s_{n}=a_{n+1}+a_{n+2}+\ldots
$$

R_{n} is the error made when the partial sum S_{n} is used to approximate S.

$$
R_{n}=a_{n+1}+a_{n+2}+\ldots \leq \int_{n}^{\infty} f(x) d x
$$

here $f(n)=a_{n}$. Similarly,

$$
R_{n}=a_{n+1}+a_{n+2}+\ldots \geq \int_{n+1}^{\infty} f(x) d x
$$

Remainder estimate for the integral test If $\sum_{n=1}^{\infty} a_{n}$ converges by the Integral Test, $\sum_{n=1}^{\infty} a_{n}=s, \sum_{k=1}^{n} a_{k}=s_{n}$, and $R_{n}=s-s_{n}$, then

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

or

$$
s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x
$$

Example 4. (a) Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ by using the sum of first 5 terms. Estimate the error involved in this approximation.
(b) How many terms are required to ensure that the sum is accurate to within 10^{-5} ?

Example 5. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ correct to three decimal places.

