Section 10.6. Representations of functions as a power series
Geometric series.
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Example 1. Find a power series representation for the function and determine the interval
of convergence.
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Term-by-term differentiation and integration. If the power series > ¢,(x —a)™ has
n=0
radius of convergence R > 0, then the function f defined by
fx)=co+ci(z—a)+e(r—a)l+..+eci(v—a) chx—a

n=0

is differentiable (and therefore continuous) on the interval (a — R,a + R) and
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The radii of convergence of these series are R. This does not mean that the interval of conver-
gence remains the same.

Example 2. Find a power series representation for the function and determine the radius
of convergence.
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Example 3. Evaluate an indefinite integral [tan~'(z?) dx as a power series.

Example 4. Use a power series to approximate the integral

1/2
/ tan~!(2?) dx
0

to six decimal places.



