Section 10.7 Taylor and Maclaurin series

Let f be any function that can be represented by a power series

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots + c_n(x - a)^n + \dots + (|x - a| < R)$$

Let us try to determine coefficients c_n , n = 0, 1, 2, ...

$$c_0 = f(a)$$

We can differentiate the series for f term-by-term.

$$f'(x) = c_1 + 2c_2(x - a) + \dots + nc_n(x - a)^{n-1} + \dots$$

$$c_1 = f'(a)$$

$$f''(x) = 2c_2 + 3 \cdot 2c_3(x - a) + \dots + n(n - 1)(x - a)^{n-2} + \dots$$

$$c_2 = \frac{f''(a)}{2}$$

$$f'''(x) = 3 \cdot 2c_3 + \dots + n(n - 1)(n - 2)(x - a)^{n-3} + \dots$$

$$c_3 = \frac{f'''(a)}{3 \cdot 2} = \frac{f'''(a)}{3!}$$

$$c_n = \frac{f^{(n)}(a)}{n!}.$$

So,

Theorem. If f has a power series representation (expansion) at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \quad |x-a| < R,$$

then

$$c_n = \frac{f^{(n)}(a)}{n!}.$$

Thus,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

the series is called the **Taylor series of the function** f at a.

Example 1. Find the Taylor series for the function $f(x) = \frac{1}{x}$ at a = 1.

If we plug 0 for x in the Taylor series, we'll get a series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

which is called the Maclauren series.

Suppose that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Let

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

 T_n is called the *n*th-degree Taylor polynomial of f at a.

In general, f(x) is the sum of its Taylor series if $f(x) = \lim_{x \to \infty} T_n(x)$.

If we let $R_n(x)$ be the remainder of the series, then

$$R_n(x) = f(x) - T_n(x)$$

If we can show that $\lim_{n\to\infty} R_n(x) = 0$, then it follows that $\lim_{n\to\infty} T_n(x) = f(x)$. For trying to show that $\lim_{n\to\infty} R_n = 0$ for a specific function f, we usually use the following fact.

Taylor's Inequality. If $|f^{(n+1)}(x)| \leq M$, then

$$|R_n| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$

Important Maclaurin series and their intervals of convergence.

Important Maclaurin series and their intervals of converger
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad (-1,1)$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad (-\infty, \infty)$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad (-\infty, \infty)$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad (-\infty, \infty)$$

$$\frac{(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \dots + \frac{m(m-1)\dots(m-n+1)}{n!}x^n + \dots, \quad [-1,1]$$

Example 2. Find the Maclaurin series for $f(x) = x^2 \cos(x^3)$.

Example 3. Use series to evaluate the limit

$$\lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x}.$$

Example 4. Find the Maclaurin series for ln(1+x) and use it to calculate ln 1.1 correct to five decimal places.

Example 5. Use series to approximate the definite integral $\int_0^{0.05} \cos(x^2) dx$ correct to three decimal places.