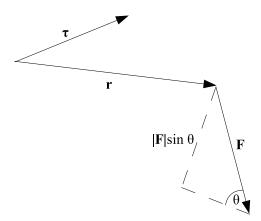
Chapter 11. Three dimensional analytic geometry and vectors. Section 11.3 The cross product.

If we tighten a bolt by applying a force to a wrench, we produce a turning effect called a torque $\vec{\tau}$ that acts along the axis of the bolt to move it forward.



The magnitude of the torque depends on two things:

- The distance from the axis of the bolt to the point where the force is applied. This is $|\vec{r}|$, the length of the position vector \vec{r} .
- The scalar component of the force \vec{F} in the direction perpendicular to \vec{r} . This is the only component that can cause a rotation and it is

$$|\vec{F}|\sin\theta$$

where θ is an angle between the vectors \vec{r} and \vec{F} .

We define the magnitude of the torque to be the product of these two factors:

$$|\tau| = |\vec{r}||\vec{F}|\sin\theta$$

If \vec{n} is a unit vector that points in the direction in which a right-threaded bolt moves, we define the torque to be the vector

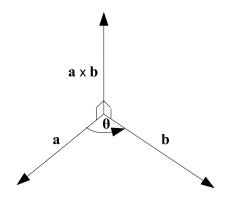
$$\vec{\tau} = (|\vec{r}||\vec{F}|\sin\theta)\vec{n}.$$

We denote this torque vector by $\vec{\tau} = \vec{r} \times \vec{F}$ and we call it the *cross product* or *vector product* of \vec{r} and \vec{F} .

Definition. If \vec{a} and \vec{b} are nonzero three-dimensional vectors, the **cross product** of \vec{a} and \vec{b} is the vector

$$\vec{a} \times \vec{b} = (|\vec{a}||\vec{b}|\sin\theta)\vec{n}$$

where θ is the angle between \vec{a} and \vec{b} and \vec{n} is a unit vector perpendicular to both \vec{a} and \vec{b} and whose direction is given by the **right-hand rule**: If the fingers of your hand curl through the angle θ from \vec{a} to \vec{b} , then your thumb points in the direction of \vec{n} .



If either \vec{a} or \vec{b} is $\vec{0}$, then we define $\vec{a} \times \vec{b}$ to be $\vec{0}$.

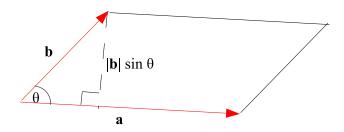
 $\vec{a}\times\vec{b}$ is orthogonal to both \vec{a} and $\vec{b}.$

Two nonzero vectors \vec{a} and \vec{b} are parallel if and only if $\vec{a} \times \vec{b} = \vec{0}$.

Properties of the cross product. If \vec{a} , \vec{b} , and \vec{c} are vectors and k is a scalar, then

- 1. $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- 2. $(k\vec{a}) \times \vec{b} = k(\vec{a} \times \vec{b}) = \vec{a} \times (k\vec{b})$
- 3. $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- 4. $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$

The length of the cross product $\vec{a} \times \vec{b}$ is equal to the area of the parallelogram determined by \vec{a} and \vec{b} .



The cross product in component form.

A determinant of order 2 is defined by

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

A determinant of order 3 can be defined in terms of second-order determinants as follows:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

The cross product of a $\vec{a}=a_1\vec{\imath}+a_2\vec{\jmath}+a_3\vec{k}$ and $\vec{b}=b_1\vec{\imath}+b_2\vec{\jmath}+b_3\vec{k}$ is

$$\left| \begin{array}{ccc|c} \vec{i} & \vec{\jmath} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array} \right| = \vec{i} \left| \begin{array}{ccc|c} a_2 & a_3 \\ b_2 & b_3 \end{array} \right| - \vec{\jmath} \left| \begin{array}{ccc|c} a_1 & a_3 \\ b_1 & b_3 \end{array} \right| + \vec{k} \left| \begin{array}{ccc|c} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| =$$

$$(a_2b_3 - a_3b_2)\vec{i} - (a_1b_3 - a_3b_1)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$$

Example 1. If $\vec{a} = <-2, 3, 4 > \text{ and } \vec{b} = <3, 0, 1 >$, find $\vec{a} \times \vec{b}$.

Example 2. Find the area of the triangle with vertices A(1,2,3), B(2,-1,1), C(0,1,-1).

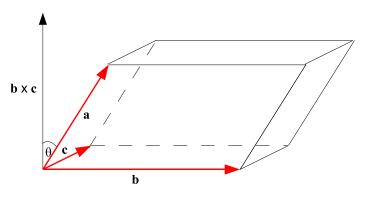
Example 3. Find two unit vectors orthogonal to both $\vec{i} + \vec{j}$ and $\vec{i} - \vec{j} + \vec{k}$.

Triple products

The product $\vec{a} \cdot (\vec{b} \times \vec{c})$ is called the **scalar triple product** of the vectors \vec{a} , \vec{b} , and \vec{c} .

The volume of the parallelepiped determined by the vectors \vec{a} , \vec{b} , and \vec{c} is the magnitude of their scalar triple product:

$$V = |\vec{a} \cdot (\vec{b} \times \vec{c})|.$$



$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

Suppose that \vec{a} , \vec{b} , and \vec{c} are given in component form:

$$\vec{a} = < a_1, a_2, a_3 >, \quad \vec{b} = < b_1, b_2, b_3 >, \quad \vec{c} = < c_1, c_2, c_3 >.$$

Then

$$ec{a} \cdot (ec{b} imes ec{c}) = \left| egin{array}{ccc} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \ \end{array} \right|$$

Example 4. Find the volume of the parallelepiped determined by vectors $\vec{a} = 2\vec{i} + 3\vec{j} - 2\vec{k}$, $\vec{b} = \vec{i} - \vec{j}$, and $\vec{c} = 2\vec{i} + 3\vec{k}$.

Example 5. Use the scalar triple product to verify that the vectors $\vec{a} = 2\vec{i} + 3\vec{j} + \vec{k}$, $\vec{b} = \vec{i} - \vec{j}$, and $\vec{c} = 7\vec{i} + 3\vec{i} + 2\vec{k}$ are complanar; that is, they lie in the same plane.

The product $\vec{a} \times (\vec{b} \times \vec{c})$ is called the **vector triple product** of the vectors \vec{a} , \vec{b} , and \vec{c} .

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}.$$