Chapter 13. Multiple integrals.

Section 13.4 Polar coordinates.

We choose a point in the plane that is called the pole (or origin) and labeled O. Then we draw a ray (half-line) starting at O called the polar axis. This axis is usually drown horizontally to the right and corresponds to the positive x-axis in Cartesian coordinates.

If P is any point in the plane, let r be the distance from O to P and let θ be the angle (in radians) between the polar axis and the line $O P$. Then the point P is represented by the ordered pair (r, θ) and r, θ are called polar coordinates of P.

We use the convention that an angle is positive if measured in the counterclockwise direction from the polar axis and negative in the clockwise direction. If $P=0$, then $r=0$ and we agree that $(0, \theta)$ represents the pole for any value of θ.

We extend the meaning of polar coordinates (r, θ) to the case in which r is negative by agreeing that the points $(-r, \theta)$ and (r, θ) lie on the same line through O and at the same distance $|r|$ from O, but on opposite sides of O.

Example 1. Plot the points whose polar coordinates are given:
(a) $(2,-\pi / 7)$
(b) $(-1, \pi / 5)$

In the Cartesian coordinate system every point has only one representation, but in the polar coordinate system each point has many representations. Since a complete counterclockwise rotation is given by an angle 2π, the point represented by polar coordinates (r, θ) is also represented by

$$
(r, \theta+2 \pi n) \quad \text { and } \quad(-r, \theta+(2 n+1) \pi),
$$

where n is any integer.
The connection between polar and Cartesian coordinates is

$$
x=r \cos \theta \quad y=r \sin \theta
$$

and

$$
r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x}
$$

Equation for θ do not uniquely determine it when x and y are given. Therefore, in converting from Cartesian to polar coordinates, it is not good enough just to find r and θ that satisfy equations. We must choose θ so that the point (r, θ) lies in correct quadrant.

Example 2. Convert the point $(2,2 \pi / 3)$ from polar to Cartesian coordinates.

Example 3. Represent the point with Cartesian coordinates $(-1,-\sqrt{3})$ in terms of polar coordinates.

The graph of a polar equation $r=f(\theta)$, or more generally, $F(r, \theta)=0$, consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation. Note that:

1. If a polar equation is unchanged when θ is replaced by $-\theta$, the curve is symmetric about the polar axis.
2. If the equation is unchanged when r is replaced by $-r$, the curve is symmetric about the pole.
3. If the equation is unchanged when θ is replaced by $\pi-\theta$, the curve is symmetric about the vertical line $\theta=\pi / 2$.

Example 4. Sketch the curve of each polar equation
(a) $r=1-\cos \theta$
(b) $r=\sin 2 \theta$.

