Section 7.3 Volumes by cylindrical shells

Lets find the volume V of a cylindrical shell with inner radius r_1 , outer radius r_2 , and height h (see Fig.1).

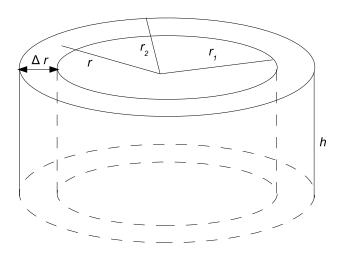


Fig.1

V can be calculated by subtracting the volume V_1 of the inner cylinder from the volume V_2 of the outer cylinder:

$$V = V_2 - V_1 = \pi h(r_2^2 - r_1^2) = 2\pi h \frac{r_2 + r_1}{2}(r_2 - r_1)$$

Let $\Delta r = r_2 - r_1$, $r = (r_2 + r_1)/2$, then the volume of a cylindrical shell is

$$V = 2\pi r h \Delta r$$

 $V = [{\rm circumference}][{\rm height}][{\rm thickness}]$

 $V = 2\pi [average radius] [height] [thickness]$

Now let S be the solid obtained by rotating about the y-axis the region bounded by $y = f(x) \ge 0$, y = 0, x = a, and x = b, where $b > a \ge 0$.

Let P be a partition of [a, b] by points x_i such that $a = x_0 < x_1 < ... < x_n = b$ and let x_i^* be the midpoint of $[x_{i-1}, x_i]$, that is $x_i^* = (x_{i-1} + x_i)/2$. If the rectangle with base $[x_{i-1}, x_i]$

and height $f(x_i^*)$ is rotated about the y-axis, then the result is a cylindrical shell with average raduis x_i^* , height $f(x_i^*)$, and thikness $\Delta x_i = x_i - x_{i-1}$, so its volume is $V_i = 2\pi x_i^* f(x_i^*) \Delta x_i$.

The approximation to the volume V of S is $V \approx \sum_{i=1}^{n} 2\pi x_i^* f(x_i^*) \Delta x_i$. This approximation appears to become better and better as $||P|| \to 0$.

Thus, the volume of S is

$$V_Y = \lim_{\|P\| \to 0} \sum_{i=1}^n 2\pi x_i^* f(x_i^*) \Delta x_i = 2\pi \int_a^b x f(x) dx$$

Example 1. Find the volume of the solid obtained by rotating the region bounded by $y = 2x - x^2$, y = 0, x = 0, x = 1 about the y-axis.

The volume of the solid generated by rotating about the y-axis the region between the curves y = f(x) and y = g(x) from a to b [$f(x) \ge g(x)$ and $0 \le a < b$] is

$$V_Y = 2\pi \int_a^b x[f(x) - g(x)]dx$$

Example 2. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$, y = 4, x = 0 about the y-axis, x > 0.

The method of cylindrical shells also allows us to compute volumes of revolution about the x-axis. If we interchange the roles of x and y in the formula for the volume, then the volume of the solid generated by rotating the region bounded by x = g(y), x = 0, y = c, and y = d about the x-axis, is

$$V_X = 2\pi \int_{c}^{d} y g(y) dy$$

Example 3. Find the volume of the solid obtained by rotating the region bounded by $y^2 - 6y + x = 0$, x = 0 about the x-axis.

The volume of the solid generated by rotating the region bounded by $x = g_1(y)$, $x = g_2(y)$, y = c, and y = d, about the x-axis, assuming that $g_2(y) \ge g_1(y)$ for all $c \le x \le d$, is

$$V_X = 2\pi \int_{c}^{d} y[g_2(y) - g_1(y)]dy$$

Example 4. Find the volume of the solid obtained by rotating the region bounded by $y = 4x - x^2$, $y = 8x - 2x^2$ about x = -2.