Section 7.5 Average value of a function

Let us try to compute the average value of a function y = f(x), $a \le x \le b$. We start by dividing the interval [a, b] into n equal subintervals, each with length $\Delta x = (b-a)/n$ and choose points x_i^* in successive subintervals. Then the average of the numbers $f(x_1^*)$, $f(x_2^*)$,..., $f(x_n^*)$, is

$$\frac{f(x_1^*) + f(x_2^*) + \dots + f(x_n^*)}{n}$$

Since $n = (b - a)\Delta x$,

$$\frac{f(x_1^*) + f(x_2^*) + \dots + f(x_n^*)}{\frac{b-a}{\Delta x}} = \frac{1}{b-a} (f(x_1^*)\Delta x + f(x_2^*)\Delta x + \dots + f(x_n^*)\Delta x)$$

The limiting value as $n \to \infty$ is

$$\lim_{n \to \infty} \frac{1}{b-a} \sum_{i=1}^n f(x_i^*) \Delta x = \frac{1}{b-a} \int_a^b f(x) dx$$

We define the **average value of** f on the interval [a, b] as

$$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Example 1. Find the average value of $f(x) = \sin^2 x \cos x$ on $[\pi/2, \pi/4]$.

Example 2. Find the numbers b such that the average value of $f(x) = 2 + 6x - 3x^2$ on the interval [0, b] is equal to 3.

Mean value theorem for integrals If f continuous on [a, b], then there exist a number c in [a, b] such that

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$

The geometric interpretation of this theorem for *positive* functions f(x), there is a number c such that the rectangle with base [a, b] and height f(c) has the same area as a region under the graph of f from a to b.

Example 3. Find the average value of the function $f(x) = 4 - x^2$ on the interval [0,2]. Find $c \ (0 \le c \le 2)$ such that $f_{ave} = f(c)$.