Chapter 8. Techniques of integration

Section 8.4 Integration of rational functions by partial fractions

In this section we show how to integrate any rational function $f(x)=\frac{P(x)}{Q(x)}$, where $P(x)=$ $a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}, Q(x)=b_{0} x^{m}+b_{1} x^{m-1}+\ldots+b_{m}$ by expressing it as a sum of partial fractions, that we know how to integrate.

STEP 1. If f is improper $(n \geq m)$, then we must divide P into Q by long divisions until a remainder $R(x)$ is obtained. The division statement is

$$
f(x)=\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}
$$

STEP 2. Factor the denominator $Q(x)$ as far as possible. It can be shown that any polynomial Q can be factored as a product of linear factors of the form $a x+b$ and irreducible quadratic factors (of the form $a x^{2}+b x+c$, where $b^{2}-4 a c<0$).

STEP 3. Express the proper rational function $\frac{R(x)}{Q(x)}$ as a sum of partial fractions of the form

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{j}}
$$

Four cases occur.

CASE I. $Q(x)$ is a product of distinct linear factors.

$$
Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \ldots\left(a_{m} x+b_{m}\right)
$$

where no factor is repeated. Then there exist constants $A_{1}, A_{2}, \ldots, A_{m}$ such that

$$
f(x)=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\ldots+\frac{A_{m}}{a_{m} x+b_{m}}
$$

Once the constants $A_{1}, A_{2}, \ldots, A_{m}$ are determined, the evaluation of $\frac{R(x)}{Q(x)}$ becomes a routine problem. The next example will illustrate one method for finding these constants.

Example 1. Evaluate $\int_{2}^{4} \frac{4 x-1}{x^{2}+x-2} d x$

CASE II. $Q(x)$ is a product of linear factors, some of which are repeated.
Suppose the first linear factor $a_{1} x+b_{1}$ is repeated r times; that is, $\left(a_{1} x+b_{1}\right)^{r}$ occurs in factorization of $Q(x)$. Then instead of the single term $A_{1} /\left(a_{1} x+b_{1}\right)$, we would use

$$
\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{\left(a_{1} x+b_{1}\right)^{2}}+\ldots+\frac{A_{r}}{\left(a_{1} x+b_{1}\right)^{r}}
$$

Example 2. Evaluate $\int \frac{5 x^{2}+6 x+9}{(x+1)^{2}(x-3)^{2}} d x$

CASE III $Q(x)$ contains irreducible quadratic factors none of which is repeated. If $Q(x)$ has the factor $a x^{2}+b x+c$, where $b^{2}-4 a c<0$, then the corresponding fraction is

$$
\frac{A x+B}{a x^{2}+b x+c}
$$

where A and B are constants to be determined.
The term $\frac{A x+B}{a x^{2}+b x+c}$ can be integrating by completing the square in the denominator.
Example 3. Find $\int \frac{3 x^{3}-x^{2}+6 x-4}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x$

CASE IV $Q(x)$ contains a repeated irreducible factor.
If $Q(x)$ has the factor $\left(a x^{2}+b x+c\right)^{r}$, where $b^{2}-4 a c<0$, then instead of the single partial fraction $\frac{A x+B}{a x^{2}+b x+c}$, the sum

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}}
$$

occurs in the partial fraction decomposition of $R(x) / Q(x)$. Each of these terms can be integrated by completing the square and making the tangent substitution.

Example 4. Write out the form of the partial fraction decomposition of the function

$$
\frac{x-3}{\left(x^{2}+x+1\right)^{2}\left(x^{2}+2 x+4\right)^{2}} \text {. }
$$

Do not determine the numerical values for the coefficients.

