Chapter 8. Techniques of integration
Section 8.9 Improper integrals

In this section we extend the conception of a definite integral to the case where the interval
is infinite and also to the case where integrand is unbounded.

Definition of an improper integral of type 1 (infinite intervals)

t
(a) If [ f(z)dx exists for every number ¢ > a, then

a

/f )z = lim tf()

provided this limit exists (as a finite number)

b) If [ f(x)dx exists for every number ¢ < b, then
t
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provided this limit exists (as a finite number)

The improper integrals in (a) and (b) are called convergent if the limit exist and divergent
if the limit does not exist.
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(¢) If both [ f(x)dx and [ f(x)dx are convergent, then we define

7f(x)dx - / F(x)dz + 7f(x)dx
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Example 1. For what values of p is the integral [ —pdx convergent?
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where a is any real number



Example 2. Determine whether each integral is convergent or divergent. Evaluate those
that are convergent.
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Definition of an improper integral of type 2 (discontinuous integrands)

(a) If f is continuous on [a,b) and is discontinuous at b, then

/bf(x)dx:tlirgl_/tf(x)dx

if this limit exists (as a finite number)
(b) If f is continuous on (a,b] and is discontinuous at a, then
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/bf(:v)dx: lim (x)dx
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if this limit exists (as a finite number)

The improper integrals in (a) and (b) are called convergent if the limit exist and divergent
if the limit does not exist.
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(¢) If f has discontinuity at ¢ (a < ¢ < b), and both [ f(z)dz and [ f(z)dx are convergent,
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Example 3. For what values of p is the integral [ —pdx convergent?
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then



Example 4. Determine whether each integral is convergent or divergent. Evaluate those
that are convergent.
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Comparison theorem Suppose that f and g are continuous functions with f(z) > g(z) >
0 for x > a.

(a) If [ f(z)dx is convergent, then | g(x)dx is convergent.

a

(b) If [ g(x)dx is divergent, then [ f(x)dz is divergent.
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Example 5. Use the Comparison Theorem to determine whether / dx is convergent
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or divergent.



