Chapter 9. Further applications of integration
 Section 9.3 Arc length

Let's a curve C is defined by the equations

$$
x=x(t), \quad y=y(t), \quad a \leq t \leq b
$$

Assume that C is smooth $\left(x^{\prime}(t)\right.$ and $y^{\prime}(t)$ are continuous and not simultaneously zero for $a<t<b$)

Let P be a partition of $[a, b]$ into n subintervals of equal length Δt.

$$
a=t_{0}<t_{1}<\ldots<t_{n}=b, \quad t_{i}=a+i \Delta t
$$

Point $P_{i}\left(x\left(t_{i}\right), y\left(t_{i}\right)\right)$ lies on C an the polygon with vertices $P_{0}, P_{1}, \ldots, P_{n}$ approximates C.
We define the length of C to be

$$
L=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

Let $\Delta x_{i}=x_{i}-x_{i-1}, \Delta y_{i}=y_{i}-y_{i-1}$, then

$$
\left|P_{i-1} P_{i}\right|=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}
$$

Since

$$
x^{\prime}\left(t_{i}\right) \approx \frac{\Delta x_{i}}{\Delta t}, \quad y^{\prime}\left(t_{i}\right) \approx \frac{\Delta y_{i}}{\Delta t}
$$

then

$$
\Delta x_{i}=x^{\prime}\left(t_{i}\right) \Delta t, \quad \Delta y_{i}=y^{\prime}\left(t_{i}\right) \Delta t
$$

Thus,

$$
L=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} \sqrt{\left[x^{\prime}\left(t_{i}\right)\right]^{2}+\left[y^{\prime}\left(t_{i}\right)\right]^{2}} \Delta t=\int_{a}^{b} \sqrt{\left[\frac{d x}{d t}\right]^{2}+\left[\frac{d y}{d t}\right]^{2}} d t
$$

If the curve C is given by the equation

$$
y=y(x), \quad a \leq x \leq b, \quad \text { then } L=\int_{a}^{b} \sqrt{1+\left[\frac{d y}{d x}\right]^{2}} d x
$$

If the curve C is given by the equation

$$
x=x(y), \quad c \leq y \leq d, \quad \text { then } L=\int_{c}^{d} \sqrt{1+\left[\frac{d x}{d y}\right]^{2}} d y
$$

Example 1. Find the length of the curve
(a) $x=3 t-t^{3}, y=3 t^{2}, 0 \leq t \leq 2$
(b) $y=\frac{x^{3}}{6}+\frac{1}{2 x}, 1 \leq x \leq 2$
(c) $x=y^{3 / 2}, 0 \leq y \leq 1$

