1. Which of the following series is convergent?

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{n^{5/7} + 1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{3^n}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

- 2. Approximate the sum of the series $\sum_{n=1}^{\infty} ne^{-n^2}$ by using the sum of first 4 terms. Estimate the error involved in this approximation.
- 3. Approximate the sum of the series $\sum_{n=1}^{\infty} (-1)^{n-1} n e^{-n^2}$ by using the sum of first 4 terms. Estimate the error involved in this approximation.
- 4. Which of the following series is absolutely convergent?

(a)
$$\sum_{n=0}^{\infty} \frac{(-3)^n}{n!}$$

(b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$
(c) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{\sqrt{n-2}}$
(d) $\sum_{n=0}^{\infty} (-1)^n \frac{2^{2n}}{3^{3n}}$

5. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}.$

6. Find the power series representation for the function $f(x) = \ln(1-2x)$ centered at 0.

- 7. Find the Taylor series for $f(x) = xe^{2x}$ at x = 2.
- 8. Find the Maclaurin series for $f(x) = x \sin(x^3)$.
- 9. Find the sum of the series

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n x^2}{n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$$

- 10. Evaluate the indefinite integral as a power series $\int e^{x^2} dx$.
- 11. Approximate $f(x) = \sin x$ by a Taylor polynomial of degree 3 at $\pi/4$. How accurate is this approximation if $0 \le x \le \pi/2$?
- 12. Find radius and center of sphere given by the equation $x^2 + y^2 + z^2 = 6x + 4y + 10z$
- 13. Find the angle between the vectors $\vec{a} = \vec{i} + \vec{j} + 2\vec{k}$ and $\vec{b} = 2\vec{j} 3\vec{k}$.
- 14. Find the directional cosines for the vector $\vec{a} = -2\vec{i} + 3\vec{j} + \vec{k}$.
- 15. Find the scalar and the vector projections of the vector < 2, -3, 1 > onto the vector < 1, 6, -2 >.