A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots
$$

Constants c_{n} are called the coefficients of the series. For each fixed x, the series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is a series of constants that we can test for convergence or divergence. A power series may converge for some values of x and diverge for other values of x. The sum of the series is a function

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}+\ldots
$$

whose domain is the set of all x for which the series converges.
More generally, a series of the form $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is called a power series centered at a or a power series about a.

A power series is convergent if $|x-a|<R$, where

$$
R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|
$$

or

$$
R=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{\left|c_{n}\right|}}
$$

R is called the radius of convergence.
If $R=0$, then the series converges only at one point $x=a$.
If $R=\infty$, then the series converges for all x.
If $R \neq 0$ and $R<\infty$, then the series converges if $a-R<x<a+R$. Also we need to test the series for convergence at $x=a-R$ and $x=a+R$.

The interval of convergence of a power series is the interval that consists of all values of x for which the series is convergent.

Example. Find the radius of convergence and interval of convergence for each of the following series

1. $\sum_{n=0}^{\infty} x^{n}$
2. $\sum_{n=0}^{\infty} \frac{x^{n}}{n+2}$
3. $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$
4. $\sum_{n=1}^{\infty} \frac{(x-4)^{n}}{n 5^{n}}$
