To locate a point in space three numbers are required. We represent any point in space by an ordered triple (a, b, c).

In order to represent points in space, we first choose a fixed point O (the origin) and tree directed lines through O that are perpendicular to each other, called the coordinate axes and labeled the x-axis, y-axis, and z-axis. Usually we think of the x and y-axes as being horizontal and z-axis as being vertical.

The direction of z-axis is determined by the right-hand rule: if your index finger points in the positive direction of the x-axis, middle finger points in the positive direction of the y-axis, then your thumb points in the positive direction of the z-axis.

The three coordinate axes determine the three coordinate planes. The $x y$-plane contains the x - and y-axes and its equation is $z=0$, the $x z$-plane contains the x - and z-axes and its equation is $y=0$, The $y z$-plane contains the y - and z-axes and its equation is $x=0$. These three coordinate planes divide space into eight parts called octants. The first octant is determined by positive axes.

Take a point P in space, let a be directed distance from $y z$-plane to P, b be directed distance from $x z$-plane to P, and c be directed distance from $x y$-plane to P.

We represent the point P by the ordered triple (a, b, c) of real numbers, and we call a, b, and c the coordinates of P.

The point $P(a, b, c)$ determine a rectangular box.

If we drop a perpendicular from P to the $x y$-plane, we get a point $Q(a, b, 0)$ called the projection of P on the $x y$-plane. Similarly, $R(0, b, c)$ and $S(a, 0, c)$ are the projections of P on the $y z$-plane and $x z$-plane, respectively.

The Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R}=\mathbb{R}^{3}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ is the set of all ordered triplets of real numbers. We have given a one-to-one correspondence between points P in space and ordered triplets (a, b, c) in \mathbb{R}^{3}. It is called a tree-dimensional rectangular coordinate system.

Example 1. What surfaces in \mathbb{R}^{3} represented by the following equations?

1. $x=9$
2. $y=-1$
3. $z=4$
4. $x+y=1$
5. $z=x$
6. $x^{2}+z^{2}=9$
7. $y=x^{2}$

The distance formula in three dimensions The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Example 2. Find the length of the sides of the triangle $A B C$, where $A(-2,6,1), B(5,4,-3)$, and $C(2,-6,4)$.

Example 3. Determine whether the points $P(1,2,3), Q(0,3,7)$, and $R(3,5,11)$ are collinear.

The midpoint of the line segment from $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
P_{M}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Example 3. Find the length of the medians of the triangle with vertices $A(1,2,3), B(-2,0,5)$, and $C(4,1,5)$.

Definition. A sphere is the set of all points that are equidistant from the center. Problem. Find an equation of a sphere of radius R and center $C(a, b, c)$.

Equation of a sphere of radius R and center $C(a, b, c)$ is

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=R^{2}
$$

Example 4. Find an equation of a sphere of radius $R=4$ centered at $C(-1,2,4)$.

Example 5. Find radius and center of sphere given by the equation

$$
x^{2}+y^{2}+z^{2}+x-2 y+6 z-2=0
$$

Example 6. Consider the points P such that the distance from P to $A(-1,5,3)$ is twice the distance from P to $B(6,2,-2)$. Show that the set of all such points is a sphere, and find its center and radius.

