We start with a simple type of solid called a cylinder. A cylinder is bounded by a plane region B_{1}, called the base, and a congruent region B_{2} in a parallel plane. The cylinder consists of all points on line segments perpendicular to the base that join B_{1} and B_{2}. If the area of the base is A and the height of the cylinder is h, then the volume of the cylinder is defined as $V=A h$.

Let S be any solid. The intersection of S with a plane is a plane region that is called a cross-section of S. Suppose that the area of the cross-section of S in a plane P_{x} perpendicular to the x-axis and passing through the point x is $A(x)$, where $a \leq x \leq b$.

Let's consider a partition P of $[a, b]$ by points x_{i} such that $a=x_{0}<x_{1}<\ldots<x_{n}=b$. The planes $P_{x_{i}}$ will slice S into smaller "slabs". If we choose x_{i}^{*} in $\left[x_{i-1}, x_{i}\right]$, we can approximate the i th slab S_{i} (the part of S between $P_{x_{i-1}}$ and $P_{x_{i}}$) by a cylinder with base area $A\left(x_{i}^{*}\right)$ and height $\Delta x_{i}=x_{i}-x_{i-1}$.

The volume of this cylinder is $A\left(x_{i}^{*}\right) \Delta x_{i}$, so the approximation to volume of the i th slab is $V\left(S_{i}\right) \approx A\left(x_{i}^{*}\right) \Delta x_{i}$. Thus, the approximation to the volume of S is $V \approx \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x_{i}$. This approximation appears to become better and better as $\|P\| \rightarrow 0$.

Definition of volume Let S be a solid that lies between the planes P_{a} and P_{b}. If the cross-sectional area of S in the plane P_{x} is $A(x)$, where A is an integrable function, then the volume of S is

$$
V=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x_{i}=\int_{a}^{b} A(x) d x
$$

IMPORTANT. $A(x)$ is the area of a moving cross-sectional obtained by slicing through x perpendicular to the x-axis.

Example 1. Find the volume of a right circular cone with height h and base radius r.

Example 2. Find the volume of a frustum of a pyramid with square base of side b, square top of side a, and height h.
$\frac{a / 2}{s}=\frac{y / 2}{s+x}=\frac{b / 2}{s+h}$
$y=\frac{x}{h}(b-a)+a$

$$
\begin{aligned}
& A=y^{2}=\frac{x^{2}}{h^{2}}(b-a)^{2}+2 \frac{x a}{h}(b-a)+a^{2} \\
& =\int_{0}^{h} A d x=\left.\frac{(b-a)^{2}}{h^{2}} \frac{x^{3}}{3}\right|_{0} ^{h}+\left.\frac{2 a}{h}(b-a) \frac{x^{2}}{2}\right|_{0} ^{h} \\
& +\left.a^{2} x\right|_{0} ^{h}=\frac{(b-a)^{2}}{3} h+h a(b-a)+a^{2} h \\
& =\frac{b^{2}-2 a b+a^{2} h+h a b-h a^{2}+a^{2} h}{3} \\
& =\frac{h}{3}\left(b^{2}+a b+a^{2}\right)
\end{aligned}
$$

Volume by disks. Let S be the solid obtained by revolving the plane region \mathcal{R} bounded by $y=f(x), y=0, x=a$, and $x=b$ about the x-axis.

A cross-section through x perpendicular to the x-axis is a circular disc with radius $|y|=$ $|f(x)|$, the cross-sectional area is $A(x)=\pi y^{2}=\pi[f(x)]^{2}$, thus, we have the following formula for a volume of revolution:

$$
V_{X}=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

The region bounded by the curves $x=g(y), x=0, y=c$, and $y=d$ is rotated about the y-axis.

Then the corresponding volume of revolution is

$$
V_{Y}=\pi \int_{c}^{d}[g(y)]^{2} d y
$$

Volume by washers. Let S be the solid generated when the region bounded by the curves $y=f(x), y=g(x), x=a$, and $x=b$ (where $f(x) \geq g(x)$ for all x in $[a, b]$) is rotated about the x-axis.

Then the volume of S is

$$
V_{X}=\pi \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x
$$

Example 3.

1. Find the volume of the solid obtained by rotating the region bounded by $y^{2}=x, x=2 y$ about the x-axis.

$$
0
$$

$$
\begin{array}{cl}
y^{2}=2 y & y^{2}=x \rightarrow y=\sqrt{x} \\
y(y-2)=0 & x=2 y \rightarrow y=\frac{x}{2} \\
y_{1}=0, y_{2}=2 . & x_{1}=0, x_{2}=4 \\
V_{x}=\pi \int_{0}^{4}\left[(\sqrt{x})^{2}-\left(\frac{x}{2}\right)^{2}\right] d x \\
=\pi \int_{0}^{4}\left(x-\frac{x^{2}}{4}\right) d x & =\left.\pi\left(\frac{x^{2}}{2}-\frac{x^{3}}{12}\right)\right|_{0} ^{4}=\pi\left(\frac{16}{2}-\frac{64}{12}\right)
\end{array}
$$

2. Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x-1}$, $y=0, x=5$ about the y-axis.

$$
y=\sqrt{5-1}=2
$$

$$
y=\sqrt{x-1}
$$

$$
\begin{aligned}
V_{y} & =\pi \int_{0}^{2}\left[25-\left(y^{2}+1\right)^{2}\right] d y \\
& =\pi \int_{0}^{2}\left[25-y^{4}-1-2 y^{2}\right] d y \\
& =\pi\left[24 y-\frac{y^{5}}{5}-\frac{2 y^{4}}{4}\right]_{0}^{2} \\
& =\pi\left(48-\frac{32}{5}-32\right) \\
& =\pi\left(16-\frac{32}{5}\right) \\
& =\pi \frac{48}{5}
\end{aligned}
$$

$$
x=y^{2}+1
$$

3. Find the volume of the solid obtained by rotating the region bounded by $y=x^{4}, y=1$ about the line $y=2$.

$$
\begin{aligned}
& =2 \pi \int_{0}^{1}\left(4-4 x^{4}+x^{8}-1\right) d x \\
& =\left.2 \pi\left(3 x-\frac{4 x^{5}}{5}+\frac{x^{9}}{9}\right)\right|_{0} ^{1} \\
& =2 \pi\left(3-\frac{4}{5}+\frac{1}{9}\right) \\
& =2 \pi \frac{135-36+5}{45} \\
& =\frac{208 \pi}{45}
\end{aligned}
$$

