Chapter 7. Applications of integration
Section 7.1 Areas between curves
The area of the region bounded by the curves $y=f(x), y=g(x)$, and the lines $x=a$ and $x=b$, where f and g are continuous functions and $f(x) \geq g(x)$ for all x in $[a, b]$, is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example 1. Find the area of the region bounded by

1. $y=x^{2}, y^{2}=x$

Points of intersection:

$$
\begin{aligned}
& \text { Points of intersection: } \\
& x^{4}=x, \quad x^{4}-x=0, x\left(x^{3}-1\right)=0 \\
& x_{1}=0, \quad x_{2}=1 \\
& A=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x=\left.\left(\frac{2}{3} x^{3 / 2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1}
\end{aligned}
$$

$$
=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}
$$

2. $y=\cos x, y=\sin 2 x, x=0, x=\pi / 2$

points of intersection:

$$
\begin{array}{lc}
\cos x=\sin 2 x & \\
\cos x=2 \sin x \cos x & \cos x=0 \\
(2 \sin x-1) \cos x=0 & x=\frac{\pi}{2} \\
& \\
& \\
& \sin x=\frac{\pi}{6}
\end{array}
$$

$A=\int_{0}^{\pi / 6}(\cos x-\sin 2 x) d x+\int_{\pi / 6}^{\pi / 2}(\sin$
$-\left.\sin x\right|_{\pi / 6} ^{\pi / 2}=\sin \frac{\pi}{6}+\frac{1}{2}^{\pi} \cos \frac{\pi}{3}-\frac{1}{2}^{1} \cos 0-\frac{1}{2} \cos \pi+\frac{1}{2} \cos \frac{\pi}{3}-\sin \frac{\pi}{2}+\sin \frac{\pi}{6}$

$$
=\frac{1}{2}+\frac{1}{2} \frac{1}{2}-\frac{1}{2}+\frac{1}{2}+\frac{1}{2} \frac{1}{2}-1+\frac{1}{2}=\frac{1}{2}
$$

Points of intersection:

$$
x^{2}+1=3-x^{2}
$$

$$
2 x^{2}=2
$$

$$
\begin{aligned}
& x= \pm 1 \\
& \rightarrow \quad x=2 A_{1}=2\left(\int_{0}^{1}\left(3-x^{2}-x^{2}-1\right) d x+\int_{1}^{2}\left(x^{2}+1-3+x^{2}\right) d x\right) \\
& =2\left(\int_{0}^{1}\left(2-2 x^{2}\right) d x+\int_{1}^{2}\left(2 x^{2}-2\right) d x\right) \\
& =4\left(\left.\left(x-\frac{x^{3}}{3}\right)\right|_{0} ^{1}+\left.\frac{x^{3}}{3}\right|_{1} ^{2}-\left.x\right|_{1} ^{2}\right)=4\left(1-\frac{1}{3}+\frac{8}{3}-\frac{1}{3}-2+1\right)
\end{aligned}
$$

$$
=18
$$

In general case, the area between the curves $y=f(x), y=g(x)$ and between $x=a$ and $x=b$, is

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

Example 2. Find the area of the shaded region.

$$
\begin{aligned}
& x=y^{2}-2 \\
& y= \pm \sqrt{x+2} \quad \begin{array}{l}
\text { points of intersection: } \\
y^{2}-2=y \\
y^{2}-y-2=0 \\
y_{1}=-1, \quad y_{2}=2 \\
x_{1}=-1, \\
x_{2}=2
\end{array} \\
& A=\int_{-2}^{2}(\sqrt{x+2}-(-\sqrt{x+2})) d x+\int_{-1}^{2}(\sqrt{x+2}-x) d x
\end{aligned}
$$

or

$$
\begin{array}{r}
A=\int_{-1}^{\text {Or }}\left(y-\left(y^{2}-2 \mid\right) d y=\left.\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}+2 y\right)\right|_{-1} ^{2}=\frac{4}{2}-\frac{8}{3}+y-\left(\frac{1}{2}+\frac{1}{3}-2\right)\right. \\
=2-\frac{8}{3}+y-\frac{1}{2}-\frac{1}{3}+2=\frac{9}{2}
\end{array}
$$

If a region is bounded by curves with equations $x=f(y), x=g(y), y=c$ and $y=d$, where f and g are continuous functions and $f(y) \geq g(y)$ for all y in $[c, d]$, then its area is

$$
A=\int_{c}^{d}[f(y)-g(y)] d y
$$

