Section 7.3 Volumes by cylindrical shells

Lets find the volume V of a cylindrical shell with inner radius r_1 , outer radius r_2 , and height h (see Fig.1).

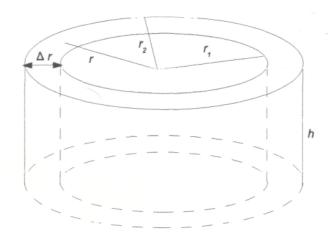


Fig.1

V can be calculated by subtracting the volume V_1 of the inner cylinder from the volume V_2 of the outer cylinder:

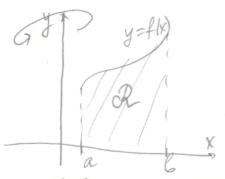
$$V = V_2 - V_1 = \pi h(r_2^2 - r_1^2) = 2\pi h \frac{r_2 + r_1}{2}(r_2 - r_1)$$

Let $\Delta r = r_2 - r_1$, $r = (r_2 + r_1)/2$, then the volume of a cylindrical shell is

$$V = 2\pi r h \Delta r$$

V = [circumference][height][thickness] $V = 2\pi [\text{average radius}][\text{height}][\text{thickness}]$

Now let S be the solid obtained by rotating about the y-axis the region bounded by $y = f(x) \ge 0$, y = 0, x = a, and x = b, where $b > a \ge 0$.



Let P be a partition of [a, b] by points x_i such that $a = x_0 < x_1 < ... < x_n = b$ and let x_i^* be the midpoint of $[x_{i-1}, x_i]$, that is $x_i^* = (x_{i-1} + x_i)/2$. If the rectangle with base $[x_{i-1}, x_i]$

and height $f(x_i^*)$ is rotated about the y-axis, then the result is a cylindrical shell with average raduis x_i^* , height $f(x_i^*)$, and thikness $\Delta x_i = x_i - x_{i-1}$, so its volume is $V_i = 2\pi x_i^* f(x_i^*) \Delta x_i$.

The approximation to the volume V of S is $V \approx \sum_{i=1}^{n} 2\pi x_i^* f(x_i^*) \Delta x_i$. This approximation appears to become better and better as $||P|| \rightarrow 0$.

Thus, the volume of S is

$$V_Y = \lim_{\|P\| \to 0} \sum_{i=1}^n 2\pi x_i^* f(x_i^*) \Delta x_i = 2\pi \int_a^o x f(x) dx$$

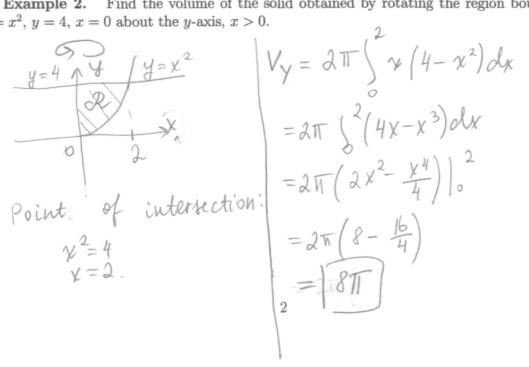
Example 1. Find the volume of the solid obtained by rotating the region bounded by $y = 2x - x^2$, y = 0, x = 0, x = 1 about the *y*-axis.

$$V_{y} = 2\pi \frac{y}{2} V_{y} = 2\pi \frac{y}{2} \frac{1}{2} \frac{y}{2} = 2\pi \frac{y}{2} \frac{1}{2} \frac$$

The volume of the solid generated by rotating about the y-axis the region between the curves y = f(x) and y = g(x) from a to b $[f(x) \ge g(x)$ and $0 \le a < b]$ is

$$V_Y = 2\pi \int_a^b x[f(x) - g(x)]dx$$

Example 2. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$, y = 4, x = 0 about the y-axis, x > 0.



The method of cylindrical shells also allows us to compute volumes of revolution about the x-axis. If we interchange the roles of x and y in the formula for the volume, then the volume of the solid generated by rotating the region bounded by x = g(y), x = 0, y = c, and y = d about the x-axis, is

$$V_X = 2\pi \int\limits_c^d yg(y)dy$$

Example 3. Find the volume of the solid obtained by rotating the region bounded by $y^2 - 6y + x = 0$, x = 0 about the x-axis.

$$\begin{aligned} \chi &= by - y^{2} \qquad \chi = -(y^{2} - by) \\ &= -(y^{2} - by + q) + q \\ b &= -(y^{-3})^{2} + 3^{2} \\ 3 &= -(y^{-3})^{2} + 3^{2} \\ V_{\chi} &= 2\pi \left(\frac{y}{b} \left(\frac{by}{b} - \frac{y^{2}}{b} \right) dy \right) \\ &= 2\pi \left(\frac{by}{b} \left(\frac{by}{b} - \frac{y^{2}}{b} \right) dy = 2\pi \left(\frac{by^{3}}{b} - \frac{y^{4}}{4} \right) \right) \\ &= 2\pi \left(\frac{2(b)^{3}}{b} - \frac{b^{4}}{4} \right) = 2\pi \left(\frac{432}{b} - 324 \right) = \frac{2(b\pi)}{b} \end{aligned}$$

The volume of the solid generated by rotating the region bounded by $x = g_1(y)$, $x = g_2(y)$, y = c, and y = d, about the x-axis, assuming that $g_2(y) \ge g_1(y)$ for all $c \le x \le d$, is

$$V_X=2\pi\int\limits_c^d y[g_2(y)-g_1(y)]dy$$

Example 4. Find the volume of the solid obtained by rotating the region bounded by $y = 4x - x^2$, $y = 8x - 2x^2$ about x = -2.

$$y = 4x - x^{2}, y = 6x - 2x^{2} \mod x^{2} = -2x^{2}, y^{2} = -(x^{2} - 4x)$$

$$= -(x^{2} - 4x + 4) + 44$$

$$= -(x^{2} - 4x + 4) + 44$$

$$= -(x^{2} - 4x + 4) + 44$$

$$= -(x^{2} - 4x^{2} + 4x^{2})$$

$$= -2((x^{2} - 4x) + 4) + 84$$

$$= -2((x^{2} - 4x) + 4) + 84$$