Chapter 7. Applications of integration Section 7.4 Work

Mechanical work is the amount of energy transferred by a force.
If an object moves along a straight line with position function $s(t)$, then the force F on the object (in the same direction) is defined by Newton's Second Law of Motion

$$
F=m a=m \frac{d^{2} s}{d t^{2}}
$$

In case of constant acceleration, the force F is also constant and the work done is defined to be the product of the force F and the distance d that the object moves

$$
W=F d, \text { work }=\text { force } \times \text { distance }
$$

Mechanical units in the U.S. customary and SI metric systems
Unit U.S. customary system SI metric system

distance	$f t$	m
mass	slug	kg
force	$l b$	$N=k g \cdot \mathrm{~m} / \mathrm{sec}^{2}$
work	$f t-l b$	$J=N \cdot m$
g (Earth $)$	$32 f t / \mathrm{sec}^{2}$	$9.81 \mathrm{~m} / \mathrm{sec}^{2}$

Example 1.

1. Find the work done in pushing a car a distance of 8 m while exerting a constant force of 900 N .

$$
W=(900)(8)=7200(\mathrm{~J})
$$

2. How much work is done by a weightlifter in raising a $60-\mathrm{kg}$ barbell from the floor to the height of 2 m ?

$$
\begin{aligned}
& m g=F=(60)(9.8)=588(N) \\
& W=F d=(588)(2)=1176(J)
\end{aligned}
$$

What happens if the force is variable?
Problem The object moves along the x-axis in the positive direction from $x=a$ to $x=b$ and at each point x between a and b a force $f(x)$ acts on the object, where f is continuous function. Find the work done in moving the object from a to b.

Let P be a partition of $[a, b]$ by points x_{i} such that $a=x_{0}<x_{1}<\ldots<x_{n}=b$ and let $\Delta x_{i}=x_{i}-x_{i-1}$, and let x_{i}^{*} is in $\left[x_{i-1}, x_{i}\right]$. Then the force at x_{i}^{*} is $f\left(x_{i}^{*}\right)$. If $\|P\|$ is small, then Δx_{i} is small, and since f is continuous, the values of f do not change very much on $\left[x_{i-1}, x_{i}\right]$. In other words f is almost a constant on the interval and so work W_{i} that is done in moving the particle from x_{i-1} to x_{i} is $W_{i} \approx f\left(x_{i}^{*}\right) \Delta x_{i}$. We can approximate the total work by

$$
W \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

This approximation becomes better and better as $\|P\| \rightarrow 0$.
Therefore, we define the work done in moving the object from a to b as

$$
W=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x
$$

Example 2. When a particle is at a distance x meters from the origin, a force of $\cos (\pi x / 3)$ N acts on it. How much work is done by moving the particle from $x=1$ to $x=2$.

$$
\begin{aligned}
& W=\int_{1}^{2} \cos \left(\frac{\pi x}{3}\right) d x=\left.\frac{3}{\pi} \sin \frac{\pi x}{3}\right|_{1} ^{2} \\
&=\frac{3}{\pi}\left(\sin \frac{2 \pi}{3}-\sin \frac{\pi}{3}\right)=0
\end{aligned}
$$

Hooke's Law: The force required to maintain a spring stretched x units beyond its natural length is proportional to x

$$
f(x)=k x
$$

where k is a positive constant (the spring constant).
Example 3. Suppose that 2 J of work are needed to stretch a spring from its natural length of 30 cm to a length of 42 cm . How much work is needed to stretch it from 35 cm to 40 cm ?

$$
\begin{gathered}
35 \mathrm{~cm} \mapsto 0.05 \mathrm{~m} \\
40 \mathrm{~cm} \mapsto 0.1 \mathrm{~m}
\end{gathered}
$$

$$
\begin{aligned}
& 30 \mathrm{~cm} \rightarrow 0 \\
& \text { 42cur }_{\text {42.12 }}=0.42 \mathrm{~m} \rightarrow 0.42-0.3=0.12 \\
& 2=\int_{0}^{0.12} k x d x=\left.\frac{k x^{2}}{2}\right|_{0} ^{0.12}=\frac{k}{2} \cdot(0.0144) \\
& x=\frac{4}{0.0144}=\frac{2500}{9} \\
& \begin{aligned}
W=\int_{0.05}^{0.1} \frac{4}{0.0144} x d x & =\left.\frac{2500}{9} \frac{x^{2}}{2}\right|_{0.05} ^{0.1} \\
& =\frac{2500}{18}(0.01-0.0025)
\end{aligned}
\end{aligned}
$$

Example 4. A uniform cable hanging over the edge of a tall building is 40 ft long and weights 60 lb . How much work id required to pull 10 ft of the cable to the top?

To lift 10 ft to the top, the part of
 the cable from x to $x+\Delta x$ must be lifted by x feat.
The remaining 30 ft of the cable must be lifted by 10 ft The cable weighty $\frac{60}{40}=\frac{3}{2}(f t-l 6)$.

$$
\begin{aligned}
& \text { Therefore, } \\
& W=\int_{\text {A circular swimming pool has a diameter of } 24 \mathrm{ft} \text {, the sides are } 5 \mathrm{ft} \text { high, }}^{10} \frac{3}{2} x d x+\int_{10}^{30} \frac{3(10)}{2} d x=\left.\frac{3}{2} \frac{x^{2}}{2}\right|_{0} ^{10}+\left.\frac{30}{2} x\right|_{-100)} ^{30}=\sqrt{\frac{300}{4}}+\frac{30}{900}
\end{aligned}
$$

Example 5. ${ }^{\circ}$ A circular swimming pool has a diameter of 24 ft , the sides are 5 ft high, and the depth of the water is 4 ft . How much work is required to pump all the water out over the side? (weight of water is $62.5 \mathrm{lb} / \mathrm{ft}^{3}$)

$$
0 \leq x \leq 4 .
$$

a cylindrical "Slice" of water Δx thick weights $=(62.5)($ volume $)$
weight $=(62.5)(144 \pi) \Delta x$
distance traveled fy the "slice" $=5-x$

$$
\begin{aligned}
W & =\int_{0}^{4}(62.5)(144 \pi)(5-x) d x \\
& =\left.(62.5)(144 \pi)\left(5 x-\frac{x^{2}}{2}\right)\right|_{0} ^{4} \\
& =(62.5)(144 \pi)(20-8) \\
& =(62.5)(144 \pi)(12)
\end{aligned}
$$

