1. Which of the following series is convergent?
(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{5 / 7}+1}$
(b) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{3^{n}}$
(c) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
2. Approximate the sum of the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$ by using the sum of first 4 terms. Estimate the error involved in this approximation.
3. Approximate the sum of the series $\sum_{n=1}^{\infty}(-1)^{n-1} n e^{-n^{2}}$ by using the sum of first 4 terms. Estimate the error involved in this approximation.
4. Which of the following series is absolutely convergent?
(a) $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}$
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$
(c) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{\sqrt{n-2}}$
(d) $\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n}}{3^{3 n}}$
5. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}(x-3)^{n}}{\sqrt{n+3}}$.
6. Find the Maclaurin series for the function
(a) $f(x)=\ln (3-2 x)$
(b) $f(x)==\frac{x^{2}}{(1+9 x)^{3}}$
7. Find the Taylor series for $f(x)=x e^{2 x}$ at $x=2$.
8. Find the Maclaurin series for $f(x)=x \sin \left(x^{3}\right)$.
9. Find the sum of the series
(a) $\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{2}}{n!}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$
10. Evaluate the indefinite integral as a power series $\int e^{x^{2}} d x$.
11. Approximate $f(x)=\sin x$ by a Taylor polynomial of degree 3 at $\pi / 4$. How accurate is this approximation if $0 \leq x \leq \pi / 2$?
12. Find radius and center of sphere given by the equation $x^{2}+y^{2}+z^{2}=6 x+4 y+10 z$
13. Find the angle between the vectors $\vec{a}=\vec{\imath}+\vec{\jmath}+2 \vec{k}$ and $\vec{b}=2 \vec{\jmath}-3 \vec{k}$.
14. Find the directional cosines for the vector $\vec{a}=-2 \vec{\imath}+3 \vec{\jmath}+\vec{k}$.
15. Find the scalar and the vector projections of the vector $\langle 2,-3,1\rangle$ onto the vector $<1,6,-2>$.
