MATH $152,525-530,534-536$, Spring 2013, Solutions for sample problems for Test 3

1. Which of the following series is convergent?
(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{5 / 7}+1}$
compare with $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{5 / 7}}=\sum_{n=1}^{\infty} n^{2-5 / 7}=\sum_{n=1}^{\infty} n^{9 / 7}$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n^{9 / 7}=\infty
$$

Divergent by the Test for Divergence
$\left(\lim _{n \rightarrow \infty} a_{n} \neq 0\right)$
(b) $\sum_{n=1}^{\infty}$
$\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{3^{n}}$

$$
\frac{\cos ^{2} n}{3^{n}} \leqslant \frac{1}{3^{n}}
$$

$\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ converges (geometric series,

$$
\left.r=\frac{1}{3}<1\right)
$$

By Comparison Test 1, $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{3^{n}}$ converges.
(c) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$

Do the, Integral Test.
$f(x)=\frac{1}{x(\ln x)^{2}}$ is positive on $[2, \infty$)
$x(\ln x)^{2}$ turns zero at $x=0, x=1$.
$\frac{1}{x(\ln x)^{2}}$ is continuous on $[2, \infty)$.

$$
\begin{aligned}
& x(\ln x)^{2} \text { is contancus } \begin{aligned}
& f^{\prime}(x)=\operatorname{sen}-1(x(\ln x))^{-2}\left[(\ln x)^{2}-2 x \ln x \cdot \frac{1}{x}\right] \\
&=-1\left(\frac{\ln ^{2} x-2}{\left.x^{2} \ln x\right)^{4}}\right)=\frac{2-\ln ^{2} x}{x^{2} \ln ^{4} x}<0 \\
& 2-\ln ^{2} x<0, \quad \ln ^{2} x>2, \ln x>\sqrt{2}
\end{aligned} \quad x>e^{\sqrt{2}} \approx 4 a
\end{aligned}
$$

$f(x)$ is decreasing on $\left[4.06, \infty^{\left.x>e^{\sqrt{2}} \approx 4.06\right]}\right.$

$$
\int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}=\left|\begin{array}{l}
u=\ln x \\
d u=\frac{d x}{x}
\end{array}\right|=\int_{\ln 2}^{\infty} \frac{d u^{2}}{x^{2}}=-\left.\frac{1}{u}\right|_{\ln 2} ^{\infty}=0-\frac{1}{\ln 2^{2}} .
$$

O) since $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}=\frac{1}{\ln 2}$ convergent,
then, by the Integral Pest, $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ converges.

2．Approximate the sum of the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$ by using the sum of first 4 terms．Estimate the error involved in this approximation．

$$
\sum_{n=1}^{\infty} n e^{-n^{2}} \approx
$$

－い

Error：

$$
\int_{a}^{\infty} x e^{-x^{2}} d x=\left|\begin{array}{l}
u=-x^{2} \\
d u=-2 x d x
\end{array}\right|=\lim _{2 t \rightarrow \infty}\left[\int_{a}^{t} x e^{-x^{2}} d x\right]
$$

$$
=\lim _{t \rightarrow \infty}\left[\frac{-1}{2} \int_{-a^{2}}^{-t^{2}} e^{u} d u\right]=\left.\lim _{t \rightarrow \infty} \frac{-1}{-2} e^{4}\right|_{-a^{2}} ^{-t^{2}}=-\lim _{2 \rightarrow \infty} e^{-t^{2}} p_{2}^{1} e^{-a^{2}}
$$

$$
\begin{aligned}
& =\frac{1}{2} e^{-a^{2}} \\
& \frac{1}{2} e^{-25} \leq R_{4} \leq \frac{1}{2} e^{-16}
\end{aligned}
$$

3．Approximate the sum of the series $\sum_{n=1}^{\infty}(-1)^{n-1} n e^{-n^{2}}$ by using the sum of first 4 terms． Estimate the error involved in this approximation．

$$
\sum_{n=1}^{\infty}(-1)^{n-1} n e^{-n^{2}} \approx e^{-1}-2 e^{-4}+3 e^{-9}-4 e^{-16}
$$

$$
\begin{aligned}
& \left|R_{4}\right| \leq b_{5} \text {, where } \quad b_{n}=n e^{-n 2} \\
& \left|R_{4}\right| \leq 5 e^{-25}
\end{aligned}
$$

4. Which of the following series is absolutely convergent?
(a) $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!} \quad$ Ratio Test for $a_{n}=\frac{(-3)^{n}}{n!}$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-3)^{n+1}}{(n+1)!}}{\frac{(-3)^{n}}{(n+6)!}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-3)}{n+1}\right|= \\
&=0<1
\end{aligned}
$$

converges absolutely
(b)

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n} \\
& \sum_{n=1}^{\infty}\left|(-1)^{n-1} \frac{1}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n} \quad \text {-diverges } \\
& b_{n}=\frac{1}{n} \quad b_{n+1}=\frac{1}{n+1}<b_{n}=\frac{1}{n} \\
& \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0 .
\end{aligned}
$$

$\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$ converges by AST, but not absolutely converges.
(c) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{\sqrt{n-2}}$

$$
\sum_{n=1}^{\infty}\left|(-1)^{n-1} \frac{n}{\sqrt{n-2}}\right|=\sum_{n=1}^{\infty} \frac{n}{\sqrt{n-2}}
$$

Oo. $\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n-2}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n} \sqrt{1-\frac{2}{n}}}=$

$$
=\lim _{n \rightarrow \infty} \sqrt{n}=\infty
$$

diverges by the Test byfor Divergence.
AST: $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n-2}}=\infty$.
diverges by AST.
The series diverges.
(d) $\sum_{n=0}^{\infty}(-1)^{n^{2 n}} \frac{2^{2 n}}{3^{3 n}}$

$$
\sum_{n=0}^{\infty}\left|(-1)^{n} \frac{2^{2 n}}{3^{3 n}}\right|=\sum_{n=0}^{\infty} \frac{2^{2 n}}{3^{3 n}}=\sum_{n=0}^{\infty}\left(\frac{4}{27}\right)^{n}
$$

converges (geometric series for $r=\frac{4}{27}<1$).
The series converges absolutely.
5. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}(x-3)^{n}}{\sqrt{n+3}}$.

The radius of converges

$$
\begin{aligned}
& R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right| \text {, where } c_{n}=\frac{2^{n}}{\sqrt{n+3}} \\
& h=\lim _{n \rightarrow \infty}\left|\frac{2^{n}}{\sqrt{n+3}}, \frac{\sqrt{n+4}}{2^{n+1}}\right|=\frac{1}{2} .
\end{aligned}
$$

The interval of convergence:

$$
\begin{gathered}
|x-3|<\frac{1}{2} \\
-\frac{1}{2}<x-3<\frac{1}{2} \\
+\frac{5}{2}<x<\frac{7}{2}
\end{gathered}
$$

End points:

$$
\begin{aligned}
& x=+\frac{5}{2} \rightarrow \sum_{n=1}^{\infty} \frac{2^{n}\left(+\frac{5}{2}-3\right)^{n}}{\sqrt{n+3}} \\
&=\sum_{n=1}^{\infty}(t-1)^{2} \frac{2^{n}\left(-\frac{1}{2}\right)^{n}}{\sqrt{n+3}} \\
&=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+3}} \text { - converges } \\
& \text { but not }
\end{aligned}
$$

$$
x=\frac{7}{2}: \sum_{n=1}^{\infty} \frac{2^{n}\left(\frac{7}{2}-3\right)^{n}}{\sqrt{n+3}}=\sum_{n=1}^{\infty} \frac{2^{n}\left(\frac{1}{2}\right)^{n}}{\sqrt{n+3}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+3}} \text { diverges. }
$$

interval of convergence: $\left[\frac{5}{2}, \frac{7}{2}\right]$

$$
R=\frac{1}{2}
$$

