6. Find the power series representation for the function $f(x)=\ln (1-2 x)$ centered at 0 .

$$
\begin{aligned}
& \quad \frac{1}{1-2 x}=\sum_{n=0}^{\infty}(+1)^{n}(2 x)^{n}=\sum_{n=0}^{\infty}(11)^{n} 2^{n} x^{n} \\
& \ln (1-2 x)=-2 \int \frac{1}{1-2 x} d x=-2 \int\left(\sum_{n=0}^{\infty}(1+1)^{n} 2^{n} x^{n}\right) d x \\
& =-2 \sum_{n=0}^{\infty}(+1)^{n} 2^{n}\left(\int x^{n} d x\right)=\sum_{n=0}^{\infty} 1(+2)^{n+1} \frac{x^{n+1}}{n+1}+C
\end{aligned}
$$

$c:$ plug $x=0$;
$\ln 1=c \rightarrow c=0$.

$$
\ln (1-2 x)=\sum_{n=0}^{\infty}(-1)(+2)^{n+1} \frac{x^{n+1}}{n+1}
$$

7. Find the Taylor series for $f(x)$

$$
\begin{aligned}
& f(x)=x e^{2 x} \\
& f^{\prime}(x)=e^{2 x}+2 x e^{2 x}=1 \cdot 2^{0} e^{2 x}+2^{\prime} x e^{2 x} \\
& f^{\prime \prime}(x)=2 e^{2 x}+2 e^{2 x}+4 x e^{2 x} \\
&=4 e^{2 x}+4 x e^{2 x}=2 \cdot 2^{\prime} e^{2 x}+2^{2} x e^{2 x} \\
& f^{\prime \prime \prime}(x)=8 e^{2 x}+4 e^{2 x}+8 x e^{2 x} \\
&=12 e^{2 x}+8 x e^{2 x}=3 \cdot 2^{2} e^{2 x}+2^{3} x e^{2 x} \\
& f^{(n)}(x)=n \cdot 2^{n-1} e^{2 x}+2^{n} x e^{2 x} \\
& x e^{2 x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!}(x-2)^{n}=\sum_{n=0}^{\infty} \frac{\left(n 2^{n-1}+2^{n} \cdot 2\right) e^{4}}{n!}(x-2)^{n} \\
&=\sum_{n=0}^{\infty}\left(n 2^{n-1}+2^{n+1}\right) e^{4}(x-2)^{n} \\
& n!
\end{aligned}
$$

8. Find the Maclaurin series for $f(x)=x \sin \left(x^{3}\right)$.

$$
\begin{aligned}
& \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& \sin x^{3}=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{3}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+3}}{(2 n+1)!} \\
& x \sin x^{3}=x \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+3}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+4}}{(2 n+1)!}
\end{aligned}
$$

9. Find the sum of the series

$$
\text { (a) } \begin{aligned}
\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{2}}{n!} & =x^{2} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!}=x^{2}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}-1+1\right] \\
& =x^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=x^{2} e^{-1}
\end{aligned}
$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{\pi}{6}\right)^{2 n} \frac{1}{(2 n)!}=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
10. Evaluate the indefinite integral as a power series $\int e^{x^{2}} d x$.

$$
\begin{aligned}
& e^{x^{2}}=\sum_{n=0}^{x^{2}} d x \\
& \int\left(\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}\right) d x=\sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{n}}{n!}\left(\int x^{2 n} d x\right) \\
&=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!} \frac{x^{2 n+1}}{(2 n+1) n!}+C
\end{aligned}
$$

11. Approximate $f(x)=\sin x$ by a Taylor polynomial of degree 3 at $\pi / 4$. How accurate is this approximation if $0 \leq x \leq \pi / 2$?

$$
\begin{aligned}
\sin x \approx & f\left(\frac{\pi}{4}\right)+f^{\prime}\left(\frac{\pi}{4}\right)\left(x-\frac{\pi}{4}\right)+f^{\prime \prime}\left(\frac{\pi}{4}\right) \cdot \frac{1}{2!}\left(x-\frac{\pi}{4}\right)^{2} \\
& \left.+f^{\prime \prime \prime} / \frac{\pi}{4}\right) \frac{1}{3!}\left(x-\frac{\pi}{4}\right)^{3}
\end{aligned}
$$

$f(x)=\sin x$
$f^{\prime}(x)=\cos x$
$f^{\prime \prime}(x)=-\sin x$
$f^{\prime \prime \prime}(x)=-\cos x$
$\sin x \approx \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{4}\left(x-\frac{\pi}{4}\right)^{2}-\frac{\sqrt{2}}{12}\left(x-\frac{\pi}{4}\right)^{3}$
Taylor's Inequality $\left.\quad\left|R_{3}\right| \leq \frac{M}{4!}\left|x-\frac{\pi}{4}\right|^{4}, \mid f^{(4)} / x\right) \mid \leq M$

$$
\begin{aligned}
& f^{(4)}(x)=\sin x . \quad|\sin x| \leq 1 \rightarrow M=1 \\
& 0 \leq x \leq \frac{\pi}{2} \longrightarrow-\frac{\pi}{4} \leq x-\frac{\pi}{4} \leq \frac{\pi}{4} \rightarrow \quad\left|x-\frac{\pi}{4}\right| \leq \frac{\pi}{4} . \\
& \text { Find radius and center of } \left.1 R_{3} \text {. } \frac{\pi}{4}\right)^{4}
\end{aligned}
$$

12. Find radius and center of sphere given by the equation $x^{2}+y^{2}+z^{2}=6 x+4 y+10 z$

Complete squares:

$$
\begin{aligned}
& x^{2}-6 x+y^{2}-4 y+z^{2}-10 z=0 \\
& (x-3)^{2}+(y-2)^{2}+(z-5)^{2}-9-4-25=0 \\
& (x-3)^{2}+(y-2)^{2}+(z-5)^{2}-38=0 \\
& (x-3)^{2}+(y-2)^{2}+(z-5)^{2}=38 \\
& \quad \text { Radius }=\sqrt{38} \\
& \quad \text { Center }(3,2,5)
\end{aligned}
$$

13. Find the angle between the vectors $\vec{a}=\vec{\imath}+\vec{\jmath}+2 \vec{k}$ and $\vec{b}=2 \vec{\jmath}-3 \vec{k}$.

$$
\begin{aligned}
& \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{(1)(0)+1(2)+2(-3)}{\sqrt{1+1+4} \sqrt{4+9}}=-\frac{4}{\sqrt{6} \sqrt{13}}=-\frac{4}{\sqrt{78}} \\
& \theta=\cos ^{-1}\left(-\frac{4}{\sqrt{78}}\right)
\end{aligned}
$$

14. Find the directional cosines for the vector $\vec{a}=-2 \overrightarrow{+}+3 \vec{\jmath}+\vec{k} . \quad,|\vec{a}|=\sqrt{4+9 t \mid}=\sqrt{\psi^{\prime} / 4}$

$$
\begin{aligned}
& \cos \alpha=\frac{-2}{\sqrt{184}} \\
& \cos \beta=\frac{3}{\sqrt{14}} \\
& \cos \gamma=\frac{1}{\sqrt{14}}
\end{aligned}
$$

15. Find the scalar and the vector projections of the vector $\langle 2,-3,1\rangle$ onto the vector $<1,6,-2>=\vec{b}$

$$
\operatorname{comp}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{2-18-2}{\sqrt{1+36+4}}=-\frac{18}{\sqrt{41}}
$$

$\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}} \vec{b}=-\frac{18}{41}\langle 1,6,-2\rangle$

