An expression of the form

$$
a_{1}+a_{2}+\ldots+a_{n}+\ldots=\sum_{n=1}^{\infty} a_{n}
$$

is called an infinite series or series.
Consider partial sums:

$$
\begin{aligned}
& S_{1}=a_{1}, \\
& S_{2}=a_{1}+a_{2}, \\
& \ldots \\
& S_{n}=a_{1}+a_{2}+\ldots+a_{n}
\end{aligned}
$$

Definition. Given a series

$$
\sum_{n=0}^{\infty} a_{n}
$$

and let

$$
S_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}(\text { the } n \text {th partial sum })
$$

If the sequence

$$
\left\{S_{n}\right\}_{n=1}^{\infty}
$$

converges and

$$
\lim _{n \rightarrow \infty} S_{n}=S
$$

then the series is called convergent and we write

$$
\sum_{n=0}^{\infty} a_{n}=S
$$

The number S is called the sum of the series. Otherwise, the series is called divergent.

The geometric series

$$
\sum_{n=0}^{\infty} a r^{n}= \begin{cases}\frac{a}{1-r}, & \text { if }|r|<1 \\ \infty, & \text { if }|r| \geq 1\end{cases}
$$

Example 1. Find four partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n-2}$.

Example 2. If the nth partial sum of the series $\sum_{n=0}^{\infty} a_{n}$ is $s_{n}=\frac{n-1}{n+1}$, find a_{n} and the sum of the series S.

Example 3. Determine whether the series is convergent or divergent. If it is convergent, find its sum.

1. $4+\frac{8}{5}+\frac{16}{25}+\frac{32}{125}+\ldots$
2. $\sum_{n=1}^{\infty} \frac{4^{n+1}}{5^{n}}$
3. $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$

Example 4. Write the number $0 . \overline{307}$ as a ratio of integers.

- The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent for $p>1$ and divergent for $p \leq 1$

Theorem. If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
If $\lim _{n \rightarrow \infty} a_{n}=0$, we can not conclude that $\sum_{n=1}^{\infty} a_{n}$ is convergent.
Test for divergence. If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
Example 5. Let $a_{n}=\frac{2 n}{3 n+1}$.

1. Determine whether $\left\{a_{n}\right\}$ is convergent.
2. Determine whether $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Theorem. If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series, then so are the series $\sum_{n=1}^{\infty} c a_{n}$ (where c is a constant $), \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right), \sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)$, and:
(i) $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
(ii) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$
(iii) $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$

NOTE. A finite number of terms can not affect the convergence of the series.
Example 6. Find the sum of the series $\sum_{n=1}^{\infty} \frac{3^{n}+(-2)^{n}}{6^{n}}$.

