Chapter 10. Infinite sequences and series Section 10.3 The Integral and Comparison Tests; Estimating Sums

The Integral Test Suppose f is continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) dx$ is convergent.

n does not have to be 1, it could be a different number. Function f(x) has to be ultimately decreasing function, that is, decreasing for x > N.

Example 1. Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$$

Example 2. Find the values of p for which the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent.

The Comparison Test I Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series, such that $0 < a_n \le b_n$ for all n.

(a) If ∑_{n=1}[∞] b_n is convergent, then ∑_{n=1}[∞] a_n is also convergent
(b) If ∑_{n=1}[∞] a_n is divergent, then ∑_{n=1}[∞] b_n is also divergent. **The Comparison Test II** Suppose ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b_n are series with positive terms, and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$$

Then either both series converge or both diverge.

Example 3. Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=3}^{\infty} \frac{1}{n^2 - 4}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n\sqrt{n}}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$$

Estimating the sum of a series

Suppose we've been able to show that a series $\sum_{n=1}^{\infty} a_n$ converges by Integral Test. We want to find an approximation to the sum S of the series. We can approximate S by partial sums S_n . How good is such an approximation?

We need to estimate the size of the remainder

$$R_n = s - s_n = a_{n+1} + a_{n+2} + \dots$$

 R_n is the error made when the partial sum S_n is used to approximate S.

$$R_n = a_{n+1} + a_{n+2} + \dots \le \int_n^\infty f(x) dx$$

here $f(n) = a_n$. Similarly,

$$R_n = a_{n+1} + a_{n+2} + \dots \ge \int_{n+1}^{\infty} f(x) dx$$

Remainder estimate for the integral test If $\sum_{n=1}^{\infty} a_n$ converges by the Integral Test, $\sum_{n=1}^{\infty} a_n = s$, $\sum_{k=1}^{n} a_k = s_n$, and $R_n = s - s_n$, then

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx$$

or

$$s_n + \int_{n+1}^{\infty} f(x)dx \le s \le s_n + \int_n^{\infty} f(x)dx$$

Example 4. (a) Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^4}$ by using the sum of first 5 terms. Estimate the error involved in this approximation.

(b) How many terms are required to ensure that the sum is accurate to within 10^{-5} ?