Chapter 7. Applications of integration

Section 7.1 Areas between curves
The area of the region bounded by the curves $y=f(x), y=g(x)$, and the lines $x=a$ and $x=b$, where f and g are continuous functions and $f(x) \geq g(x)$ for all x in $[a, b]$, is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example 1. Find the area of the region bounded by

1. $y=x^{2}, y^{2}=x$
2. $y=\cos x, y=\sin 2 x, x=0, x=\pi / 2$
3. $y=x^{2}+1, y=3-x^{2}, x=-1, x=2$

In general case, the area between the curves $y=f(x), y=g(x)$ and between $x=a$ and $x=b$, is

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

Example 2. Find the area of the shaded region.

If a region is bounded by curves with equations $x=f(y), x=g(y), y=c$ and $y=d$, where f and g are continuous functions and $f(y) \geq g(y)$ for all y in $[c, d]$, then its area is

$$
A=\int_{c}^{d}[f(y)-g(y)] d y
$$

