Section 7.3 Volumes by cylindrical shells

Lets find the volume V of a cylindrical shell with inner radius r_1 , outer radius r_2 , and height h (see Fig.1).

Vaylinder = $\pi r^2 h$

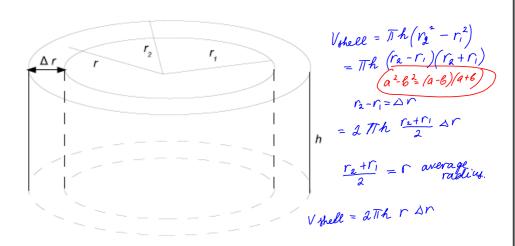


Fig.1

V can be calculated by subtracting the volume V_1 of the inner cylinder from the volume V_2 of the outer cylinder:

$$V = V_2 - V_1 = \pi h(r_2^2 - r_1^2) = 2\pi h \frac{r_2 + r_1}{2}(r_2 - r_1)$$

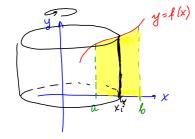
Let $\Delta r = r_2 - r_1$, $r = (r_2 + r_1)/2$, then the volume of a cylindrical shell is

$$V = 2\pi r h \Delta r$$

V = [circumference][height][thickness]

 $V = 2\pi [average radius] [height] [thickness]$

Now let S be the solid obtained by rotating about the y-axis the region bounded by $y = f(x) \ge 0$, y = 0, x = a, and x = b, where $b > a \ge 0$.



where
$$b > a \ge 0$$
.

Cylinder generated by rotating the line $x = x_i^*$ about the y-axis.

$$radius = v_i^*$$

$$height = f(x_i^*)$$

$$Volume = V_i = 2\pi [radius][height] \Delta x$$

$$= 2\pi x_i^* f(x_i^*) \Delta x$$

$$V = \lim_{t \to \infty} \sum_{i=1}^{\infty} V_i^*$$

Let P be a partition of [a, b] by points x_i such that $a = x_0 < x_1 < ... < x_n = b$ and let x_i^* be the midpoint of $[x_{i-1}, x_i]$, that is $x_i^* = (x_{i-1} + x_i)/2$. If the rectangle with base $[x_{i-1}, x_i]$

1

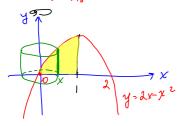
and height $f(x_i^*)$ is rotated about the y-axis, then the result is a cylindrical shell with average raduis x_i^* , height $f(x_i^*)$, and thikness $\Delta x_i = x_i - x_{i-1}$, so its volume is $V_i = 2\pi x_i^* f(x_i^*) \Delta x_i$.

The approximation to the volume V of S is $V \approx \sum_{i=1}^{n} 2\pi x_i^* f(x_i^*) \Delta x_i$. This approximation appears to become better and better as $||P|| \to 0$.

Thus, the volume of S is

$$V_Y = \lim_{\|P\| \to 0} \sum_{i=1}^n 2\pi x_i^* f(x_i^*) \Delta x_i = 2\pi \int_a^b \underbrace{\text{[vadiy][height]}}_a \text{ for } x f(x) dx = \text{Vy}$$

Example 1. Find the volume of the solid obtained by rotating the region bounded by $y = 2x - x^2$, y = 0, x = 0, x = 1 about the y-axis.

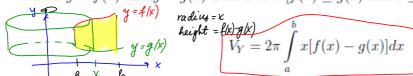


Take $0 \le x \le 1$, vertical line through x, rotate the line about the y-axis.

$$V_{y} = 2\pi \int_{b}^{1} x(2x-x^{2}) dx = 2\pi \int_{a}^{1} (2x^{2}-x^{3}) dx$$

$$= 2\pi \left(\frac{2x^{3}}{3} - \frac{x^{4}}{4}\right)_{a}^{1} = 2\pi \left(\frac{2}{3} - \frac{1}{4}\right)$$

The volume of the solid generated by rotating about the y-axis the region between the curves y = f(x) and y = g(x) from a to b $[f(x) \ge g(x)]$ and $0 \le a < b$ is



Example 2. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$, y = 4, x = 0 about the y-axis, x > 0.

$$0 \le x \le 2$$

$$[radius] = x$$

$$[height] = 4-x^{2}$$

$$V_{y} = 2\pi \int_{0}^{2} \chi (4-x^{2}) dx = 2\pi \int_{0}^{2} (4x-x^{3}) dx$$

$$= 2\pi \left(\frac{4x^{2}}{2} - \frac{x^{4}}{4}\right)_{0}^{2}$$

$$= \left[2\pi \left(\frac{16}{2} - \frac{16}{4}\right)\right] = \boxed{8\pi}$$

The method of cylindrical shells also allows us to compute volumes of revolution about the x-axis. If we interchange the roles of x and y in the formula for the volume, then the volume of the solid generated by rotating the region bounded by x = g(y), x = 0, y = c, and y = d about the x-axis, is $x = \frac{y}{(x+d)^2} = \frac{y}{(x+d)^2}$

by rotating the region bounded by
$$x=g(y)$$
 radius = $g(y)$ height = $g(y)$ $V_X=2\pi\int\limits_c^d yg(y)dy$

Example 3. Find the volume of the solid obtained by rotating the region bounded by $y^2 - 6y + x = 0$, x = 0 about the x-axis.

$$x = -y^2 + 6y$$

$$y = -y^2 + 6y$$

$$y = -y^2 + 6y$$

$$y = -y^2 + 6y$$

Integrate for y.

$$-y^{2} + 6y = 0 \longrightarrow y(6-y) = 0$$

$$y_{1} = 0, y_{2} = 6$$

$$0 \le y \le 6$$

radius = y
height =
$$-y^2 + by$$
 $V = 2\pi \int_{0}^{b} y(-y^2 + by) dy = 2\pi \int_{0}^{b} (-y^3 + by^2) dy$

$$= 2\pi \left(-y\frac{4}{4} + \frac{by^3}{3}\right)_{0}^{b} = 2\pi \left(-\frac{b^4}{4} + \frac{b(b^3)}{3}\right)_{0}^{b}$$

$$= 2\pi \left(\frac{129b}{3} - \frac{129b}{4}\right)$$

The volume of the solid generated by rotating the region bounded by $x = g_1(y)$, $x = g_2(y)$, y = c, and y = d, about the x-axis, assuming that $g_2(y) \ge g_1(y)$ for all $c \le x \le d$, is

$$V_X = 2\pi \int_{c}^{d} y[g_2(y) - g_1(y)]dy$$

Example 4. Find the volume of the solid obtained by rotating the region bounded by $y = 4x - x^2$, $y = 8x - 2x^2$ about x = -2.

Integrate for
$$\chi$$
.

$$0 = \chi \leq 4$$

$$0 = \chi \leq 4$$

$$[radiu_{4}] = 2 + \chi$$

$$[height] = 8x - 2\chi^{2} - (4x - \chi^{2})$$

$$= 4x - \chi^{2}$$

$$V = 2\pi \int_{0}^{4} [radiu_{4}] [height] dx = 2\pi \int_{0}^{4} (2 + \chi)(4x - \chi^{2}) dx$$

$$= 2\pi \int_{0}^{4} (8x - 2x^{2} + 4x^{2} - x^{3}) dx = 2\pi \int_{0}^{4} (8x + 2x^{2} - x^{3}) dx$$

$$= 2\pi \left(\frac{8\chi^{2}}{2} + \frac{2\chi^{3}}{3} - \frac{\chi^{4}}{4} \right)_{0}^{4}$$

$$= 2\pi \left(\frac{8(16)}{2} + \frac{2(64)}{2} - \frac{256}{4} \right)$$