Section 7.3 Volumes by cylindrical shells

Lets find the volume V of a cylindrical shell with inner radius ry, outer radius 5, and height

h (see Fig.1). VW _
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Fig.1
V' can be calculated by subtracting the volume Vj of the inner cylinder from the volume V5
of the outer eyvlinder:

V=Vo—V; = mh(r} — 12) = 2xp 2111
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Let Ar =1y —ry, r = (ro + 1) /2, then the volume of a cylindrical shell is

V = 2arhAr ‘
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Now let S be the solid obtained by rotating about the y-axas the region bounded by y =
flx) =0,y =0, 7 =a,and x = b, where b > a > 0.
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Let P be a partition of [a,b] by points x; such that a = rg < 7y < ... < 7, = b and let
z? be the midpoint of [z;_y, z;], that 18 27 = (z;_y + 2;)/2. If the rectangle with base [z; 1, ;]
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and height f(z}) is rotated about the y-axis, then the result is a cylindrical shell with average
radws 3, height f(z}), and thikness Axr; = z; — x;_4, s its volume is V; = 2mz] f(x7)Ax;.

The approximation to the volume V of § 18 V Z 2rx} f(x})Ax;. This approximation

appears to become better and better as | P| — 0.
Thus, the volume of S 1s
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Example 1. Find the volume of the solid obtained by rotating the region bounded by

y=2r 22, y=0, ;—z—-ﬂéﬁl-l—about the y-axis.
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The volume of the solid generated by rotating about the y-axis the region between the
curves y = f(z) and y = g(z) from a to b [f(z) > g(z) and 0 < a < b] is
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Example 2. Find the volume of the solid obtained by rotating the region bounded by

y=a y= 4.bout the y-axis, = > (.
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The method of eylindrical shells also allows us to compute volumes of revolution about the
r-axis. If we interchange the roles of x and y in the formula for the volume, then the volume
of the solid generated by rotating the region bounded by z = g(y). 2 =0, y = ¢, and y = d

ab’?ut the z-axis, 1s
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Find the volume of the solid obtained by rotating the region bounded by

y® — 6y + x = 0,[z = Oabout the z-axis.
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The volume of the solid generated by rotating the region bounded by = = g,(y), = = ga(y),
y = ¢, and y = d, about the z-axis, assuming that go(y) = g1(y) foralle < z < d. is

d
Vy =2 [ ylga(y) — gi(y)]dy
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Example 4. Find the volume of the sohd obtained by rotating the region bounded by

y =4r — x%, y = 8x — 222 about r = —2.
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