Section 7.5 Average value of a function

Let us try to compute the average value of a function $y=f(x), a \leq x \leq b$. We start by dividing the interval $[a, b]$ into n equal subintervals, each with length $\Delta x=(b-a) / n$ and choose points x_{i}^{*} in successive subintervals. Then the average of the numbers $f\left(x_{1}^{*}\right), f\left(x_{2}^{*}\right), \ldots, f\left(x_{n}^{*}\right)$, is

$$
\frac{f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\ldots+f\left(x_{n}^{*}\right)}{n}
$$

Since $n=(b-a) \Delta x$,

$$
\frac{f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\ldots+f\left(x_{n}^{*}\right)}{\frac{b-a}{\Delta x}}=\frac{1}{b-a}\left(f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\ldots+f\left(x_{n}^{*}\right) \Delta x\right)
$$

The limiting value as $n \rightarrow \infty$ is

$$
\lim _{n \rightarrow \infty} \frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

We define the average value of f on the interval $[a, b]$ as

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Example 1. Find the average value of $f(x)=\sin ^{2} x \cos x$ on $[\pi / 4, \pi / 2]$.

Example 2. Find the numbers b such that the average value of $f(x)=2+6 x-3 x^{2}$ on the interval $[0, b]$ is equal to 3 .

Mean value theorem for integrals If f continuous on $[a, b]$, then there exist a number c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

The geometric interpretation of this theorem for positive functions $f(x)$, there is a number c such that the rectangle with base $[a, b]$ and height $f(c)$ has the same area as a region under the graph of f from a to b.

Example 3. Find the average value of the function $f(x)=4-x^{2}$ on the interval $[0,2]$. Find $c(0 \leq c \leq 2)$ such that $f_{\text {ave }}=f(c)$.

