1. Evaluate the integral

(a)
$$\int \frac{x^2}{\sqrt{5-x^2}} dx$$

(b) $\int \frac{x^3}{\sqrt{x^2+4}} dx$
(c) $\int \frac{dx}{\sqrt{x^2+4x-5}}$
(d) $\int \frac{dx}{x^2(x^2+1)}$
(e) $\int \frac{x^2+3x-1}{x-1} dx$
(f) $\int_{0}^{\infty} \frac{dx}{(x+2)(x+3)}$
(g) $\int_{-\infty}^{1} \frac{dx}{(2x-3)^2}$
(h) $\int_{4}^{5} \frac{dx}{(5-x)^{2/5}}$

2. Write out the form of the partial fraction decomposition of the function

$$\frac{x^3 + x - 1}{(x^2 - 1)(x + 1)(x^2 + 1)^2}.$$

Do not determine the numerical values for the coefficients.

3. Use the Comparison Theorem to determine which of the following integrals is convergent.

(a)
$$\int_{3}^{\infty} \frac{3+\sin x}{x} dx$$

(b)
$$\int_{1}^{\infty} \frac{2+\cos x}{x^2} dx$$

(c)
$$\int_{1}^{\infty} \frac{dx}{x+e^{3x}}$$

- 4. Find the length of the curve $x(t) = 3t t^3$, $y(t) = 3t^2$, $0 \le t \le 2$.
- 5. Find the area of the surface obtained by rotating the curve $y = x^3$, $0 \le x \le 2$ about the x-axis.

- 6. Find the area of the surface obtained by rotating the curve $x = \sqrt{2y y^2}$, $0 \le y \le 1$ about the y-axis.
- 7. Which sequence is both bounded and increasing?
 - (a) $a_n = 1 \frac{2}{n}$ (b) $a_n = \ln n$ (c) $a_n = \sin(2\pi n)$ (d) $a_n = e^{-n}$
- 8. Find the following limits

(a)
$$\lim_{n \to \infty} \frac{(-1)^n}{n^3}$$

(b) $\lim_{n \to \infty} \frac{\sqrt{n}}{\ln n}$
(c) $\lim_{n \to \infty} \frac{1 - 2n^2}{\sqrt[3]{n^6 + 1} + 2n^2}}$
(d) $\lim_{n \to \infty} \left(\frac{1}{3}\ln(n^3 + 5n - 2) - \ln(2 - n)\right)$

- 9. The sequence defined by $a_1 = 2$ and $a_{n+1} = 5 \frac{4}{a_n}$ is increasing and bounded above. Find its limit.
- 10. If the series $\sum_{n=1}^{\infty} a_n$ has a partial sum of $s_n = \frac{2n+3}{3n-1}$, find a_3 and the sum of the series.
- 11. Find the sum of the series

(a)
$$\sum_{n=1}^{\infty} \frac{2^{2n+1}}{3^{3n-1}}$$

(b) $\sum_{n=3}^{\infty} \frac{1}{n^2 - 4}$

12. Which of the following statements is true for the series $\sum_{n=1}^{\infty} \frac{3n}{\sqrt{1+4n^2}}?$

I. It converges by the Divergence Test.

II. It converges to $\frac{3}{2}$. III. It diverges.