1. Evaluate the integral
(a) $\int \frac{x^{2}}{\sqrt{5-x^{2}}} d x$
(b) $\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x$
(c) $\int \frac{d x}{\sqrt{x^{2}+4 x-5}}$
(d) $\int \frac{d x}{x^{2}\left(x^{2}+1\right)}$
(e) $\int \frac{x^{2}+3 x-1}{x-1} d x$
(f) $\int_{0}^{\infty} \frac{d x}{(x+2)(x+3)}$
(g) $\int_{-\infty}^{1} \frac{d x}{(2 x-3)^{2}}$
(h) $\int_{4}^{5} \frac{d x}{(5-x)^{2 / 5}}$
2. Write out the form of the partial fraction decomposition of the function

$$
\frac{x^{3}+x-1}{\left(x^{2}-1\right)(x+1)\left(x^{2}+1\right)^{2}} .
$$

Do not determine the numerical values for the coefficients.
3. Use the Comparison Theorem to determine which of the following integrals is convergent.
(a) $\int_{3}^{\infty} \frac{3+\sin x}{x} d x$
(b) $\int_{1}^{\infty} \frac{2+\cos x}{x^{2}} d x$
(c) $\int_{1}^{\infty} \frac{d x}{x+e^{3 x}}$
4. Find the length of the curve $x(t)=3 t-t^{3}, y(t)=3 t^{2}, 0 \leq t \leq 2$.
5. Find the area of the surface obtained by rotating the curve $y=x^{3}, 0 \leq x \leq 2$ about the x-axis.
6. Find the area of the surface obtained by rotating the curve $x=\sqrt{2 y-y^{2}}, 0 \leq y \leq 1$ about the y-axis.
7. Which sequence is both bounded and increasing?
(a) $a_{n}=1-\frac{2}{n}$
(b) $a_{n}=\ln n$
(c) $a_{n}=\sin (2 \pi n)$
(d) $a_{n}=e^{-n}$
8. Find the following limits
(a) $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n^{3}}$
(b) $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\ln n}$
(c) $\lim _{n \rightarrow \infty} \frac{1-2 n^{2}}{\sqrt[3]{n^{6}+1}+2 n^{2}}$
(d) $\lim _{n \rightarrow \infty}\left(\frac{1}{3} \ln \left(n^{3}+5 n-2\right)-\ln (2-n)\right)$
9. The sequence defined by $a_{1}=2$ and $a_{n+1}=5-\frac{4}{a_{n}}$ is increasing and bounded above. Find its limit.
10. If the series $\sum_{n=1}^{\infty} a_{n}$ has a partial sum of $s_{n}=\frac{2 n+3}{3 n-1}$, find a_{3} and the sum of the series.
11. Find the sum of the series
(a) $\sum_{n=1}^{\infty} \frac{2^{2 n+1}}{3^{3 n-1}}$
(b) $\sum_{n=3}^{\infty} \frac{1}{n^{2}-4}$
12. Which of the following statements is true for the series $\sum_{n=1}^{\infty} \frac{3 n}{\sqrt{1+4 n^{2}}}$?
I. It converges by the Divergence Test.
II. It converges to $\frac{3}{2}$.
III. It diverges.

