## MATH152, 525-530, 534-536 Spring 2013, Sample problems for the Final

1. Find the area of the region bounded by $y=x^{2}+1, y=3-x^{2}, x=-2$, and $x=2$.
2. Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}-1$, $y=0, x=1, x=2$ about the $x$-axis.
3. Find the volume of the solid obtained by rotating the region bounded by $y=x^{2}, y=0$. $x=1, x=2$ about
(a) the $y$-axis
(b) $x=4$
4. A heavy rope, 50 ft long, weighs $0.5 \mathrm{lb} / \mathrm{ft}$ and hangs over the edge of a building 120 ft hight. How much work is done in pulling the rope to the top of the building?
5. A spring has a natural length of 20 cm . If a $25-\mathrm{N}$ force is required to keep it stretched to a length of 30 cm , how much work is required to stretch it from 20 cm to 25 cm ?
6. Find the average value of $f=\sin ^{2} x \cos x$ on $[-\pi / 2, \pi / 4]$.
7. Evaluate the integral
(a) $\int t^{2} \cos \left(1-t^{3}\right) d t$
(b) $\int \frac{x^{2}}{\sqrt{1-x}} d x$
(c) $\int_{0}^{1} x^{2} e^{-x} d x$
(d) $\int \sin ^{3} x \cos ^{4} x d x$
(e) $\int_{0}^{\pi / 8} \sin ^{2}(2 x) \cos ^{3}(2 x) d x$
(f) $\int \sin ^{2} x \cos ^{4} x d x$
(g) $\int_{0}^{\pi / 4} \tan ^{4} x \sec ^{2} x d x$
(h) $\int \tan x \sec ^{3} x d x$
(i) $\int \sin 3 x \cos x d x$
(j) $\int \frac{x^{2}}{\sqrt{5-x^{2}}} d x$
(k) $\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x$
(1) $\int \frac{d x}{\sqrt{x^{2}+4 x-5}}$
(m) $\int \frac{d x}{x^{2}\left(x^{2}+1\right)}$
(n) $\int \frac{x^{2}+3 x-1}{x-1} d x$
(o) $\int_{0}^{\infty} \frac{d x}{(x+2)(x+3)}$
(p) $\int_{-\infty}^{1} \frac{d x}{(2 x-3)^{2}}$
(q) $\int_{4}^{5} \frac{d x}{(5-x)^{2 / 5}}$
8. Find the length of the curve $x(t)=3 t-t^{3}, y(t)=3 t^{2}, 0 \leq t \leq 2$.
9. Find the area of the surface obtained by rotating the curve $y=x^{3}, 0 \leq x \leq 2$ about the $x$-axis.
10. Find the area of the surface obtained by rotating the curve $x=\sqrt{2 y-y^{2}}, 0 \leq y \leq 1$ about the $y$-axis.
11. Find the following limits
(a) $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\ln n}$
(b) $\lim _{n \rightarrow \infty} \frac{1-2 n^{2}}{\sqrt[3]{n^{6}+1}+2 n^{2}}$
(c) $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})$
12. Find the sum of the series
(a) $\sum_{n=1}^{\infty} \frac{2^{2 n+1}}{3^{3 n-1}}$
(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{2}}{n!}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$
13. Which of the following series is convergent?
(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{5 / 7}+1}$
(b) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{3^{n}}$
(c) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
14. Which of the following series is absolutely convergent?
(a) $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}$
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$
(c) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{\sqrt{n-2}}$
(d) $\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n}}{3^{3 n}}$
15. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}(x-3)^{n}}{\sqrt{n+3}}$.
16. Find the power series representation for the function $f(x)=\ln (3-2 x)$ centered at 0 .
17. Find the Taylor series for $f(x)=x e^{x}$ at $x=2$.
18. Find the Maclaurin series for $f(x)=x \sin \left(x^{3}\right)$.
19. Find radius and center of sphere given by the equation $x^{2}+y^{2}+z^{2}=6 x+4 y+10 z$
20. Find the angle between the vectors $\vec{a}=\vec{\imath}+\vec{\jmath}+2 \vec{k}$ and $\vec{b}=2 \vec{\jmath}-3 \vec{k}$.
21. Find the directional cosines for the vector $\vec{a}=-2 \vec{\imath}+3 \vec{\jmath}+\vec{k}$.
22. Find the scalar and the vector projections of the vector $\langle 2,-3,1\rangle$ onto the vector $<1,6,-2>$.
23. Given vectors $\vec{a}=<-2,3,4>$ and $\vec{b}=<1,0,3>$. Find $\vec{a} \times \vec{b}$.
24. Find the volume of the parallelepiped determined by vectors $\vec{a}=<1,0,6>, \vec{b}=<$ $2,3,-8>$, and $\vec{c}=<8,-5,6>$.
25. Represent the point with Cartesian coordinates $(2 \sqrt{3},-2)$ in terms of polar coordinates.
26. Sketch the curve $r=\sin 5 \theta$.
