Geometric series.

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, \quad|x|<1
$$

Example 1. Find a power series representation for the function and determine the interval of convergence.

1. $\frac{1}{1+x}$
2. $\frac{1}{4-x^{2}}$
3. $\frac{2}{1+4 x^{2}}$
4. $\frac{1+x^{2}}{1-x^{2}}$

Term-by-term differentiation and integration. If the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then the function f defined by

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots+c_{n}(x-a)^{n}+\ldots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

is differentiable (and therefore continuous) on the interval $(a-R, a+R)$ and

$$
\begin{gathered}
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\ldots+n c_{n}(x-a)^{n-1}+\ldots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+\ldots+c_{n} \frac{(x-a)^{n+1}}{n+1}+\ldots= \\
C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
\end{gathered}
$$

The radii of convergence of these series are R. This does not mean that the interval of convergence remains the same.

Example 2. Find a power series representation for the function and determine the radius of convergence.

1. $\frac{1}{(1+x)^{2}}$
2. $\ln (4+x)$

Example 3. Evaluate an indefinite integral $\int \tan ^{-1}\left(x^{2}\right) d x$ as a power series.

Example 4. Use a power series to approximate the integral

$$
\int_{0}^{1 / 2} \tan ^{-1}\left(x^{2}\right) d x
$$

to six decimal places.

