Section 10.7 Taylor and Maclaurin series

Let f be any function that can be represented by a power series

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots+c_{n}(x-a)^{n}+\ldots(|x-a|<R)
$$

Let us try to determine coefficients $c_{n}, n=0,1,2, \ldots$.

$$
c_{0}=f(a)
$$

We can differentiate the series for f term-by-term.

$$
\begin{gathered}
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+\ldots+n c_{n}(x-a)^{n-1}+\ldots \\
c_{1}=f^{\prime}(a) \\
f^{\prime \prime}(x)=2 c_{2}+3 \cdot 2 c_{3}(x-a)+\ldots+n(n-1)(x-a)^{n-2}+\ldots \\
c_{2}=\frac{f^{\prime \prime}(a)}{2} \\
f^{\prime \prime \prime}(x)=3 \cdot 2 c_{3}+\ldots+n(n-1)(n-2)(x-a)^{n-3}+\ldots \\
c_{3}=\frac{f^{\prime \prime \prime}(a)}{3 \cdot 2}=\frac{f^{\prime \prime \prime}(a)}{3!}
\end{gathered}
$$

So,

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

Theorem. If f has a power series representation (expansion) at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, \quad|x-a|<R
$$

then

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

Thus,

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

the series is called the Taylor series of the function f at a.
Example 1. Find the Taylor series for the function $f(x)=\frac{1}{x}$ at $a=1$.

If we plug 0 for a in the Taylor series, we'll get a series

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

which is called the Maclauren series.
Suppose that

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Let

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

T_{n} is called the n th-degree Taylor polynomial of f at a.
In general, $f(x)$ is the sum of its Taylor series if $f(x)=\lim _{n \rightarrow \infty} T_{n}(x)$.
If we let $R_{n}(x)$ be the remainder of the series, then

$$
R_{n}(x)=f(x)-T_{n}(x)
$$

If we can show that $\lim _{n \rightarrow \infty} R_{n}(x)=0$, then it follows that $\lim _{n \rightarrow \infty} T_{n}(x)=f(x)$. For trying to show that $\lim _{n \rightarrow \infty} R_{n}=0$ for a specific function f, we usually use the following fact.

Taylor's Inequality. If $\left|f^{(n+1)}(x)\right| \leq M$, then

$$
\left|R_{n}\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}
$$

Important Maclaurin series and their intervals of convergence.

$$
\begin{array}{|l|}
\hline \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},(-1,1) \\
\hline \hline e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!},(-\infty, \infty) \\
\hline \hline \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad(-\infty, \infty) \\
\hline \hline \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad(-\infty, \infty) \\
\hline \frac{(1+x)^{m}=1+m x+\frac{m(m-1)}{2!} x^{2}+\frac{m(m-1)(m-2)}{2!} x^{3}+\ldots+}{3(m-1) \ldots(m-n+1)} x^{n}+\ldots, \quad[-1,1] \\
\frac{n!}{} \quad \\
\hline
\end{array}
$$

Example 2. Find the Maclaurin series for $f(x)=x^{2} \cos \left(x^{3}\right)$.

Example 3. Find the sum of the series

1. $\sum_{n=2}^{\infty} \frac{3^{n}}{n!}$
2. $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{6^{2 n+1}(2 n+1)!}$
3. $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{4^{2 n}(2 n)!}$

Example 4. Use series to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}} .
$$

Example 5. Find the Maclaurin series for $\ln (1+x)$ and use it to calculate $\ln 1.1$ correct to five decimal places.

Example 6. Use series to approximate the definite integral $\int_{0}^{0.05} \cos \left(x^{2}\right) d x$ correct to three decimal places.

